Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 105-112
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Lattice-ordered groups, as well as $GMV$-algebras (pseudo $MV$-algebras), are both particular cases of dually residuated lattice-ordered monoids ($DR\ell $-monoids for short). In the paper we study ideals of lower-bounded $DR\ell $-monoids including $GMV$-algebras. Especially, we deal with the connections between ideals of a $DR\ell $-monoid $A$ and ideals of the lattice reduct of $A$.
@article{AUPO_2004__43_1_a9,
author = {K\"uhr, Jan},
title = {Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {105--112},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2004},
mrnumber = {2124607},
zbl = {1071.06007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a9/}
}
TY - JOUR AU - Kühr, Jan TI - Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2004 SP - 105 EP - 112 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a9/ LA - en ID - AUPO_2004__43_1_a9 ER -
%0 Journal Article %A Kühr, Jan %T Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2004 %P 105-112 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a9/ %G en %F AUPO_2004__43_1_a9
Kühr, Jan. Remarks on ideals in lower-bounded dually residuated lattice-ordered monoids. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 105-112. http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a9/