Class preserving mappings of equivalence systems
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 61-64
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By an equivalence system is meant a couple $\mathcal{A} = (A,\theta )$ where $A$ is a non-void set and $\theta $ is an equivalence on $A$. A mapping $h$ of an equivalence system $\mathcal{A}$ into $\mathcal{B}$ is called a class preserving mapping if $h([a]_{\theta }) = [h(a)]_{\theta {^{\prime }}}$ for each $a \in A$. We will characterize class preserving mappings by means of permutability of $\theta $ with the equivalence $\Phi _{h}$ induced by $h$.
Classification :
03E02, 08A02, 08A35
Keywords: equivalence relation; equivalence system; relational system; homomorphism; strong homomorphism; permuting equivalences
Keywords: equivalence relation; equivalence system; relational system; homomorphism; strong homomorphism; permuting equivalences
@article{AUPO_2004__43_1_a5,
author = {Chajda, Ivan},
title = {Class preserving mappings of equivalence systems},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {61--64},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2004},
mrnumber = {2124603},
zbl = {1077.08001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/}
}
TY - JOUR AU - Chajda, Ivan TI - Class preserving mappings of equivalence systems JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2004 SP - 61 EP - 64 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/ LA - en ID - AUPO_2004__43_1_a5 ER -
Chajda, Ivan. Class preserving mappings of equivalence systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 61-64. http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/