Class preserving mappings of equivalence systems
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 61-64.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By an equivalence system is meant a couple $\mathcal{A} = (A,\theta )$ where $A$ is a non-void set and $\theta $ is an equivalence on $A$. A mapping $h$ of an equivalence system $\mathcal{A}$ into $\mathcal{B}$ is called a class preserving mapping if $h([a]_{\theta }) = [h(a)]_{\theta {^{\prime }}}$ for each $a \in A$. We will characterize class preserving mappings by means of permutability of $\theta $ with the equivalence $\Phi _{h}$ induced by $h$.
Classification : 03E02, 08A02, 08A35
Keywords: equivalence relation; equivalence system; relational system; homomorphism; strong homomorphism; permuting equivalences
@article{AUPO_2004__43_1_a5,
     author = {Chajda, Ivan},
     title = {Class preserving mappings of equivalence systems},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {61--64},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2004},
     mrnumber = {2124603},
     zbl = {1077.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Class preserving mappings of equivalence systems
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 61
EP  - 64
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/
LA  - en
ID  - AUPO_2004__43_1_a5
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Class preserving mappings of equivalence systems
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 61-64
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/
%G en
%F AUPO_2004__43_1_a5
Chajda, Ivan. Class preserving mappings of equivalence systems. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 61-64. http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a5/