Impulsive periodic boundary value problem
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 33-53.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the paper we consider the impulsive periodic boundary value problem with a general linear left hand side. The results are based on the topological degree theorems for the corresponding operator equation $(I-F)u = 0$ on a certain set $\Omega $ that is established using properties of strict lower and upper functions of the boundary value problem.
Classification : 34B15, 34B37, 34C25
Keywords: Boundary value problem; topological degree; upper and lower functions; impulsive problem; periodic solution; differential equation.
@article{AUPO_2004__43_1_a3,
     author = {Draessler, Jan},
     title = {Impulsive periodic boundary value problem},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2004},
     mrnumber = {2124601},
     zbl = {1072.34025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a3/}
}
TY  - JOUR
AU  - Draessler, Jan
TI  - Impulsive periodic boundary value problem
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 2004
SP  - 33
EP  - 53
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a3/
LA  - en
ID  - AUPO_2004__43_1_a3
ER  - 
%0 Journal Article
%A Draessler, Jan
%T Impulsive periodic boundary value problem
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 2004
%P 33-53
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a3/
%G en
%F AUPO_2004__43_1_a3
Draessler, Jan. Impulsive periodic boundary value problem. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 33-53. http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a3/