A characterization of almost continuity and weak continuity
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 133-136
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
It is well known that a function $f$ from a space $X$ into a space $Y$ is continuous if and only if, for every set $K$ in $X$ the image of the closure of $K$ under $f$ is a subset of the closure of the image of it. In this paper we characterize almost continuity and weak continuity by proving similar relations for the subsets $K$ of $X$.
Classification :
54C08, 54C10
Keywords: almost continuous function; weakly continuous function
Keywords: almost continuous function; weakly continuous function
@article{AUPO_2004__43_1_a12,
author = {Petalas, Chrisostomos and Vidalis, Theodoros},
title = {A characterization of almost continuity and weak continuity},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {133--136},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2004},
mrnumber = {2124610},
zbl = {1064.54025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a12/}
}
TY - JOUR AU - Petalas, Chrisostomos AU - Vidalis, Theodoros TI - A characterization of almost continuity and weak continuity JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 2004 SP - 133 EP - 136 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a12/ LA - en ID - AUPO_2004__43_1_a12 ER -
%0 Journal Article %A Petalas, Chrisostomos %A Vidalis, Theodoros %T A characterization of almost continuity and weak continuity %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 2004 %P 133-136 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a12/ %G en %F AUPO_2004__43_1_a12
Petalas, Chrisostomos; Vidalis, Theodoros. A characterization of almost continuity and weak continuity. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 43 (2004) no. 1, pp. 133-136. http://geodesic.mathdoc.fr/item/AUPO_2004__43_1_a12/