Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{AUPO_1993__32_1_a14, author = {R\r{u}\v{z}i\v{c}kov\'a, Miroslava}, title = {The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, pages = {151--158}, publisher = {mathdoc}, volume = {32}, number = {1}, year = {1993}, mrnumber = {1273177}, zbl = {0794.34040}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/} }
TY - JOUR AU - Růžičková, Miroslava TI - The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1993 SP - 151 EP - 158 VL - 32 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/ LA - en ID - AUPO_1993__32_1_a14 ER -
%0 Journal Article %A Růžičková, Miroslava %T The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1993 %P 151-158 %V 32 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/ %G en %F AUPO_1993__32_1_a14
Růžičková, Miroslava. The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 151-158. http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/