The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 151-158.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 34A34, 34C99, 34D05
@article{AUPO_1993__32_1_a14,
     author = {R\r{u}\v{z}i\v{c}kov\'a, Miroslava},
     title = {The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {151--158},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {1993},
     mrnumber = {1273177},
     zbl = {0794.34040},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/}
}
TY  - JOUR
AU  - Růžičková, Miroslava
TI  - The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1993
SP  - 151
EP  - 158
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/
LA  - en
ID  - AUPO_1993__32_1_a14
ER  - 
%0 Journal Article
%A Růžičková, Miroslava
%T The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1993
%P 151-158
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/
%G en
%F AUPO_1993__32_1_a14
Růžičková, Miroslava. The asymptotic properties of solutions of differential system of the form $g_i(x)y'_i=u_i(y_i)+f_i(x,y_1,\cdots, y_n)$, $i=1,2,\cdots, n$ in some neighbourhood of a singular point. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 32 (1993) no. 1, pp. 151-158. http://geodesic.mathdoc.fr/item/AUPO_1993__32_1_a14/