Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{AUPO_1987__26_1_a12, author = {Bene\v{s}, Karel}, title = {Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x\sp n$ by a broken line}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, pages = {187--194}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {1987}, mrnumber = {1033339}, zbl = {0691.65005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPO_1987__26_1_a12/} }
TY - JOUR AU - Beneš, Karel TI - Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x\sp n$ by a broken line JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1987 SP - 187 EP - 194 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_1987__26_1_a12/ LA - en ID - AUPO_1987__26_1_a12 ER -
%0 Journal Article %A Beneš, Karel %T Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x\sp n$ by a broken line %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1987 %P 187-194 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_1987__26_1_a12/ %G en %F AUPO_1987__26_1_a12
Beneš, Karel. Simulation of an approximate optimal decomposition in breakpoints in approximating the function $f(x)=x\sp n$ by a broken line. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 26 (1987) no. 1, pp. 187-194. http://geodesic.mathdoc.fr/item/AUPO_1987__26_1_a12/