Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{AUPO_1982__21_1_a6, author = {Pavl{\'\i}kov\'a, Elena}, title = {Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$}, journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica}, pages = {69--78}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {1982}, mrnumber = {0702609}, zbl = {0522.34033}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/} }
TY - JOUR AU - Pavlíková, Elena TI - Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1982 SP - 69 EP - 78 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/ LA - en ID - AUPO_1982__21_1_a6 ER -
%0 Journal Article %A Pavlíková, Elena %T Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1982 %P 69-78 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/ %G en %F AUPO_1982__21_1_a6
Pavlíková, Elena. Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/