Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Classification : 34A30, 34C10, 34C20
@article{AUPO_1982__21_1_a6,
     author = {Pavl{\'\i}kov\'a, Elena},
     title = {Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$},
     journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
     pages = {69--78},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {1982},
     mrnumber = {0702609},
     zbl = {0522.34033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/}
}
TY  - JOUR
AU  - Pavlíková, Elena
TI  - Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$
JO  - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY  - 1982
SP  - 69
EP  - 78
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/
LA  - en
ID  - AUPO_1982__21_1_a6
ER  - 
%0 Journal Article
%A Pavlíková, Elena
%T Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$
%J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
%D 1982
%P 69-78
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/
%G en
%F AUPO_1982__21_1_a6
Pavlíková, Elena. Higher monotonicity properties of  $i$-th derivatives of solutions of  $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/