Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
@article{AUPO_1982__21_1_a6,
author = {Pavl{\'\i}kov\'a, Elena},
title = {Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
pages = {69--78},
publisher = {mathdoc},
volume = {21},
number = {1},
year = {1982},
mrnumber = {0702609},
zbl = {0522.34033},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/}
}
TY - JOUR AU - Pavlíková, Elena TI - Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica PY - 1982 SP - 69 EP - 78 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/ LA - en ID - AUPO_1982__21_1_a6 ER -
%0 Journal Article %A Pavlíková, Elena %T Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$ %J Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica %D 1982 %P 69-78 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/ %G en %F AUPO_1982__21_1_a6
Pavlíková, Elena. Higher monotonicity properties of $i$-th derivatives of solutions of $y'' + a(x) y' + b(x) y = 0$. Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Tome 21 (1982) no. 1, pp. 69-78. http://geodesic.mathdoc.fr/item/AUPO_1982__21_1_a6/