Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 20 (2021), pp. 43-56.

Voir la notice de l'article provenant de la source Library of Science

This paper investigates the problem of the existence and uniqueness of solutions under the generalized self-similar forms to the space-fractional diffusion equation. Therefore, through applying the properties of Schauder's and Banach's fixed point theorems; we establish several results on the global existence and blow-up of generalized self-similar solutions to this equation.
Keywords: fractional diffusion, generalized self-similar solution, blow-up, global existence, uniqueness
@article{AUPCM_2021_20_a2,
     author = {Nouioua, Farid and Basti, Bilal},
     title = {Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {43--56},
     publisher = {mathdoc},
     volume = {20},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a2/}
}
TY  - JOUR
AU  - Nouioua, Farid
AU  - Basti, Bilal
TI  - Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2021
SP  - 43
EP  - 56
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a2/
LA  - en
ID  - AUPCM_2021_20_a2
ER  - 
%0 Journal Article
%A Nouioua, Farid
%A Basti, Bilal
%T Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2021
%P 43-56
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a2/
%G en
%F AUPCM_2021_20_a2
Nouioua, Farid; Basti, Bilal. Global existence and blow-up of generalized self-similar solutions for a space-fractional diffusion equation with mixed conditions. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 20 (2021), pp. 43-56. http://geodesic.mathdoc.fr/item/AUPCM_2021_20_a2/

[1] Arioua, Yacine, and Bilal Basti, and Nouredine Benhamidouche. "Initial value problem for nonlinear implicit fractional differential equations with Katugampola derivative." Appl. Math. E-Notes 19 (2019): 397-412.

[2] Basti, Bilal, and Yacine Arioua, and Nouredine Benhamidouche. "Existence and uniqueness of solutions for nonlinear Katugampola fractional differential equations." J. Math. Appl. 42 (2019): 35-61.

[3] Basti, Bilal, and Yacine Arioua, and Nouredine Benhamidouche. "Existence results for nonlinear Katugampola fractional differential equations with an integral condition." Acta Math. Univ. Comenian. (N.S.) 89 (2020): 243-260.

[4] Basti, Bilal, and Nouredine Benhamidouche. "Existence results of self-similar solutions to the Caputo-type’s space-fractional heat equation." Surv. Math. Appl. 15 (2020): 153-168.

[5] Basti, Bilal, and Nouredine Benhamidouche. "Global existence and blow-up of generalized self-similar solutions to nonlinear degenerate dffusion equation not in divergence form." Appl. Math. E-Notes 20 (2020): 367-387.

[6] Buckwar, Evelyn, and Yurii F. Luchko. "Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations." J. Math. Anal. Appl. 227, no. 1 (1998): 81-97.

[7] Diethelm, Kai. The Analysis of Fractional Differential Equations, Vol. 2004 of Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2010.

[8] Granas, Andrzej and James Dugundji. Fixed Point Theory. Springer Monographs in Mathematics. New York: Springer-Verlag, 2003.

[9] Kilbas, Anatoly A., and Hari M. Srivastava, and Juan J. Trujillo. Theory and Applications of Fractional Diffrential Equations. vol. 204 of North-Holland Mathematics Studies. Elsevier Science, 2006.

[10] Luchko, Yurii F., and Rudolf Gorenflo. "Scale-invariant solutions of a partial differential equation of fractional order." Fract. Calc. Appl. Anal. 1, no. 1 (1998): 63-78.

[11] Luchko, Yurii F., et al. "Fractional models, non-locality, and complex systems." Comput. Math. Appl. 59, no. 3 (2010): 1048-1056.

[12] Metzler, Ralf, and Theo F. Nonnemacher. "Space- and time-fractional diffusion and wave equations, fractional Fokker-Planck equations, and physical motivation." Chem. Phys. 284, no. 1-2 (2002): 67-90.

[13] Miller, Kenneth S., and Bertram Ross. An Introduction to the Fractional Calculus and Differential Equations. A Wiley-Interscience Publication. New York– Chichester–Brisbane–Singapore: John Wiley Sons Inc., 1993.

[14] Pierantozzi, Teresa, and Luis Vázquez Martínez. "An interpolation between the wave and diffusion equations through the fractional evolution equations Dirac like." J. Math. Phys. 46, no. 11 (2005): Art no. 113512.

[15] Podlubny, Igor. Fractional Differential Equations. Vol. 198 of Mathematics in Science and Engineering. New York: Academic Press, 1999.

[16] Samko, Stefan Grigor’evich, and Anatoli˘ı Aleksandrovich Kilbas, and Oleg Igorevich Marichev. Fractional Integral and Derivatives (Theory and Applications). Switzerland: Gordon and Breach, 1993.

[17] Vázquez Martínez, Luis, and Juan J. Trujillo, and María Pilar Velasco. "Fractional heat equation and the second law of thermodynamics." Fract. Calc. Appl. Anal. 14, no. 3 (2011): 334-342.