On the Chow ring of certain Fano fourfolds
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 39-52.

Voir la notice de l'article provenant de la source Library of Science

We prove that certain Fano fourfolds of K3 type constructed by Fatighenti–Mongardi have a multiplicative Chow–Künneth decomposition. We present some consequences for the Chow ring of these fourfolds.
Keywords: Algebraic cycles, Chow ring, motives, Beauville “splitting property”, Fano variety, K3 surface
@article{AUPCM_2020_19_a3,
     author = {Laterveer, Robert},
     title = {On the {Chow} ring of certain {Fano} fourfolds},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     pages = {39--52},
     publisher = {mathdoc},
     volume = {19},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a3/}
}
TY  - JOUR
AU  - Laterveer, Robert
TI  - On the Chow ring of certain Fano fourfolds
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2020
SP  - 39
EP  - 52
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a3/
LA  - en
ID  - AUPCM_2020_19_a3
ER  - 
%0 Journal Article
%A Laterveer, Robert
%T On the Chow ring of certain Fano fourfolds
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2020
%P 39-52
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a3/
%G en
%F AUPCM_2020_19_a3
Laterveer, Robert. On the Chow ring of certain Fano fourfolds. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, Tome 19 (2020), pp. 39-52. http://geodesic.mathdoc.fr/item/AUPCM_2020_19_a3/

[1] Beauville, Arnaud. "On the splitting of the Bloch-Beilinson filtration. In Algebraic cycles and motives. Vol. 2." , Vol. 344 of London Math. Soc. Lecture Note Ser. Cambridge: Cambridge Univ. Press, 2007.

[2] Beauville, Arnaud, and Claire Voisin "On the Chow ring of a K3 surface." J. Algebraic Geom. 13, no. 3 (2004): 417-426.

[3] Deligne, Pierre. "Théorème de Lefschetz et critères de dégénérescence de suites spectrales." Inst. Hautes Études Sci. Publ. Math. 35 (1968): 259-278.

[4] Deninger, Christopher, and Jacob Murre. "Motivic decomposition of abelian schemes and the Fourier transform." J. Reine Angew. Math. 422 (1991): 201-219.

[5] Fatighenti, Enrico, and Giovanni Mongardi. "Fano varieties of K3 type and IHS manifolds." arXiv (2019): 1904.05679.

[6] Fu, Lie, Robert Laterveer, and Charles Vial. "The generalized Franchetta conjecture for some hyper-Kähler varieties." J. Math. Pures Appl. (9) 130 (2019): 1-35.

[7] Fu, Lie, Zhiyu Tian, and Charles Vial. "Motivic hyper-Kähler resolution conjecture, I: generalized Kummer varieties." Geom. Topol. 23, no. 1 (2019): 427-492.

[8] Fu, Lie, and Charles Vial. "Distinguished cycles on varieties with motive of abelian type and the Section Property", arXiv (2017): 1709.05644v2.

[9] Laterveer, Robert. "Algebraic cycles on some special hyperkähler varieties." Rend. Mat. Appl. (7) 38, no. 2 (2017): 243-276. Cited on 49.

[10] Laterveer, Robert. "A remark on the Chow ring of Küchle fourfolds of type d3." Bull. Aust. Math. Soc. 100, no. 3 (2019): 410-418.

[11] Laterveer, Robert. "Algebraic cycles and Verra fourfolds." Tohoku Math. J. (to appear)

[12] Laterveer, Robert. "On the Chow ring of Fano varieties of type S2." preprint.

[13] Laterveer, Robert and Charles Vial. "On the Chow ring of Cynk–Hulek Calabi–Yau varieties and Schreieder varieties." Canadian Journal of Math. DOI: 10.4153/S0008414X19000191.

[14] Murre, Jacob P. "On a conjectural filtration on the Chow groups of an algebraic variety I and II. Indag. Math. (N.S.) 4, no. 2 (1993): 177-201.

[15] Murre, Jacob P., Jan Nagel, and Chris A.M. Peters. Lectures on the theory of pure motives. Providence, RI: American Mathematical Society, 2013.

[16] Pavic, Nebojsa, Junliang Shen, and Qizheng Yin. "On O’Grady’s generalized Franchetta conjecture." Int. Math. Res. Not. IMRN 2017, no. 16 (2017): 4971-4983.

[17] Scholl, Anthony J. "Classical motives." In Vol. 55 of Proc. Sympos. Pure Math., 163–187. Providence, RI: Amer. Math. Soc., 1994.

[18] Shen, Mingmin, and Charles Vial. "The Fourier transform for certain hyperkähler fourfolds." Mem. Amer. Math. Soc. 240 (2016): no. 1139.

[19] Shen, Mingmin, and Charles Vial. "The motive of the Hilbert cube X[3]." Forum Math. Sigma 4 (2016): e30.

[20] Vial, Charles. "On the motive of some hyperKähler varieties." J. Reine Angew. Math. 725 (2017): 235-247.

[21] Voisin, Claire. "Chow rings and decomposition theorems for families of K3 surfaces and Calabi-Yau hypersurfaces." Geom. Topol. 16, no. 1 (2012): 433-473.

[22] Voisin, Claire. Chow rings, decomposition of the diagonal, and the topology of families. Vol. 187 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 2014.