Starlike functions of complex order involving q-hypergeometric functions with fixed point
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

Recently Kanas and Ronning introduced the classes of starlike and convex functions, which are normalized with ƒ(ξ) = ƒ0(ξ) − 1 = 0, ξ (|ξ| = d) is a fixed point in the open disc U = z ∈ ℂ: |z| 1. In this paper we define a new subclass of starlike functions of complex order based on q-hypergeometric functions and continue to obtain coefficient estimates, extreme points, inclusion properties and neighbourhood results for the function class T Sξ(α, β,γ). Further, we obtain integral means inequalities for the function ƒ ∈ T Sξ(α, β,γ).
@article{AUPCM_2014_13_a9,
     author = {Vijaya, Kaliappan and Murugusundaramoorthy, Gangadharan and Kasthuri, Murugesan},
     title = {Starlike functions of complex order involving q-hypergeometric functions with fixed point},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a9/}
}
TY  - JOUR
AU  - Vijaya, Kaliappan
AU  - Murugusundaramoorthy, Gangadharan
AU  - Kasthuri, Murugesan
TI  - Starlike functions of complex order involving q-hypergeometric functions with fixed point
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a9/
LA  - en
ID  - AUPCM_2014_13_a9
ER  - 
%0 Journal Article
%A Vijaya, Kaliappan
%A Murugusundaramoorthy, Gangadharan
%A Kasthuri, Murugesan
%T Starlike functions of complex order involving q-hypergeometric functions with fixed point
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a9/
%G en
%F AUPCM_2014_13_a9
Vijaya, Kaliappan; Murugusundaramoorthy, Gangadharan; Kasthuri, Murugesan. Starlike functions of complex order involving q-hypergeometric functions with fixed point. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a9/

[1] Md. Aabed, M. Darus, A generalized operator involving the q-hypergeometric function, Mat. Vesnik 65 (2013), no. 4, 454-465. Cited on 52 and 53.

[2] O. Altintas, O. Ozkan, H.M. Srivastava, Neighborhoods of a class of analytic functions with negative coefficients, Appl. Math. Lett. 13 (2000), no. 3, 63-67. Cited on 53.[Crossref]

[3] M.K. Aouf, A. Shamandy, A.O. Mostafa, S. Madian, A subclass of M-W-starlike functions, Univ. Apulensis Math. Inform. No. 21 (2010), 135-142. Cited on 53.

[4] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446. Cited on 53.[Crossref]

[5] B.C. Carlson, S.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), no. 4, 737-745. Cited on 53.[Crossref]

[6] J. Dziok, H.M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), no. 1, 1-13. Cited on 53.[Crossref]

[7] J. Dziok, H.M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transforms Spec. Funct. 14 (2003), no. 1, 7-18. Cited on 53.

[8] A.W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598-601. Cited on 52.[Crossref]

[9] S. Kanas, F. Rønning, Uniformly starlike and convex functions and other related classes of univalent functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 53 (1999), 95-105. Cited on 52.

[10] R.J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc. 16 (1965) 755-758. Cited on 52 and 53.[Crossref]

[11] R.J. Libera, Univalent -spiral functions, Canad. J. Math. 19 (1967) 449-456.Cited on 54.[Crossref]

[12] J.E. Littlewood, On inequalities in theory of functions, Proc. Lond. Math. Soc. 23 (1925), 481-519. Cited on 59.[Crossref]

[13] A.E. Livingston, On the radius of univalence of certain analytic functions, Proc.Amer. Math. Soc. 17 (1966) 352-357. Cited on 53.[Crossref]

[14] G. Murugusundaramoorthy, H.M. Srivastava, Neighborhoods of certain classes of analytic functions of complex order, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 2, Article 24, 8 pp. Cited on 53 and 60.

[15] S.D. Purohit, R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Math. Scand. 109 (2011), no. 1, 55-70. Cited on52.

[16] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115. Cited on 53.[Crossref]

[17] S. Ruscheweyh, Neighborhoods of univalent functions, Proc. Amer. Math. Soc. 81 (1981), no. 4, 521-527. Cited on 60.[Crossref]

[18] L. Špacek, Príspẽvek, k teorii funkci prostých, Casopis Pest. Math. 63 (1933), 12-19. Cited on 54.

[19] H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math.Soc. 51 (1975), 109-116. Cited on 52 and 56.[Crossref]

[20] H. Silverman, Integral means for univalent functions with negative coefficients, Houston J. Math. 23 (1997), no. 1, 169-174. Cited on 59.

[21] H.M. Srivastava, S. Owa, A note on certain subclasses of spiral-like functions, Rend. Sem. Mat. Univ. Padova 80 (1988), 17-24. Cited on 54.