Semiprime rings with nilpotent Lie ring of inner derivations
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions
@article{AUPCM_2014_13_a7,
     author = {Kular, Kamil},
     title = {Semiprime rings with nilpotent {Lie} ring of inner derivations},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a7/}
}
TY  - JOUR
AU  - Kular, Kamil
TI  - Semiprime rings with nilpotent Lie ring of inner derivations
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a7/
LA  - en
ID  - AUPCM_2014_13_a7
ER  - 
%0 Journal Article
%A Kular, Kamil
%T Semiprime rings with nilpotent Lie ring of inner derivations
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a7/
%G en
%F AUPCM_2014_13_a7
Kular, Kamil. Semiprime rings with nilpotent Lie ring of inner derivations. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a7/

[1] N. Argaç, H.G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009), no. 5, 997-1005. Cited on 104.[Crossref]

[2] M.J. Atteya, Commutativity results with derivations on semiprime rings, J. Math. Comput. Sci. 2 (2012), no. 4, 853-865. Cited on 104.

[3] M.N. Daif, H.E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. Cited on 104.[Crossref]

[4] I.N. Herstein, Noncommutative rings, Carus Mathematical Monographs, 15. Mathematical Association of America, Washington, DC, 1994. Cited on 104.

[5] M. Hongan, A note on semiprime rings with derivation, Internat. J. Math. Math. Sci. 20 (1997), no. 2, 413-415. Cited on 104.[Crossref]