Semiprime rings with nilpotent Lie ring of inner derivations
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014)
Cet article a éte moissonné depuis la source Library of Science
We give an elementary and self-contained proof of the theorem which says that for a semiprime ring commutativity, Lie-nilpotency, and nilpotency of the Lie ring of inner derivations are equivalent conditions
@article{AUPCM_2014_13_a7,
author = {Kular, Kamil},
title = {Semiprime rings with nilpotent {Lie} ring of inner derivations},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
year = {2014},
number = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a7/}
}
Kular, Kamil. Semiprime rings with nilpotent Lie ring of inner derivations. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a7/
[1] N. Argaç, H.G. Inceboz, Derivations of prime and semiprime rings, J. Korean Math. Soc. 46 (2009), no. 5, 997-1005. Cited on 104.[Crossref]
[2] M.J. Atteya, Commutativity results with derivations on semiprime rings, J. Math. Comput. Sci. 2 (2012), no. 4, 853-865. Cited on 104.
[3] M.N. Daif, H.E. Bell, Remarks on derivations on semiprime rings, Internat. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. Cited on 104.[Crossref]
[4] I.N. Herstein, Noncommutative rings, Carus Mathematical Monographs, 15. Mathematical Association of America, Washington, DC, 1994. Cited on 104.
[5] M. Hongan, A note on semiprime rings with derivation, Internat. J. Math. Math. Sci. 20 (1997), no. 2, 413-415. Cited on 104.[Crossref]