On some flat connection associated with locally symmetric surface
Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014).

Voir la notice de l'article provenant de la source Library of Science

For every two-dimensional manifold M with locally symmetric linear connection ∇, endowed also with ∇-parallel volume element, we construct a flat connection on some principal fibre bundle P(M,G). Associated with - satisfying some particular conditions - local basis of TM local connection form of such a connection is an R(G)-valued 1-form build from the dual basis ω1, ω2 and from the local connection form ω of ▽. The structural equations of (M,∇) are equivalent to the condition dΩ-Ω∧Ω=0. This work was intended as an attempt to describe in a unified way the construction of similar 1-forms known for constant Gauss curvature surfaces, in particular of that given by R. Sasaki for pseudospherical surfaces.
@article{AUPCM_2014_13_a4,
     author = {Robaszewska, Maria},
     title = {On some flat connection associated with locally symmetric surface},
     journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
     publisher = {mathdoc},
     number = {13},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a4/}
}
TY  - JOUR
AU  - Robaszewska, Maria
TI  - On some flat connection associated with locally symmetric surface
JO  - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY  - 2014
IS  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a4/
LA  - en
ID  - AUPCM_2014_13_a4
ER  - 
%0 Journal Article
%A Robaszewska, Maria
%T On some flat connection associated with locally symmetric surface
%J Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
%D 2014
%N 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a4/
%G en
%F AUPCM_2014_13_a4
Robaszewska, Maria. On some flat connection associated with locally symmetric surface. Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica, no. 13 (2014). http://geodesic.mathdoc.fr/item/AUPCM_2014_13_a4/

[1] J. Gancarzewicz, Zarys współczesnej geometrii rózniczkowej, Script, Warszawa 2010. Cited on 24.

[2] S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. I, Interscience Publishers, a division of John Wiley Sons, New York-London 1963. Cited on 22.

[3] M. Marvan, On the spectral parameter problem, Acta Appl. Math. 109 (2010), no. 1, 239-255. Cited on 20.

[4] K. Nomizu, T. Sasaki, Affine differential geometry. Geometry of affine immersions. Cambridge Tracts in Mathematics 111, Cambridge University Press, Cambridge, 1994. Cited on 22.

[5] B. Opozda, Locally symmetric connections on surfaces, Results Math. 20 (1991), no. 3-4, 725-743. Cited on 21.

[6] B. Opozda, Some relations between Riemannian and affine geometry, Geom. Dedicata 47 (1993), no. 2, 225-236. Cited on 21 and 22.

[7] R. Sasaki, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154 (1979), no. 2, 343-357. Cited on 19 and 20.

[8] C.L. Terng, Geometric transformations and soliton equations, Handbook of geometric analysis, No. 2, 301-358, Adv. Lect. Math. (ALM), 13, Int. Press, Somerville, MA, 2010. Cited on 20.

[9] E. Wang, Tzitzéica transformation is a dressing action, J. Math. Phys. 47 (2006), no. 5, 053502, 13 pp. Cited on 20.