Contribution to the Hadamard multiplication theorem
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 94-107.

Voir la notice de l'article provenant de la source Library of Science

In this article we define a binary linear operator T for holomorphic functions in given open sets A and B in the complex plane under certain additional assumptions. It coincides with the classical Hadamard product of holomorphic functions in the case where A and B are the unit disk. We show that the operator T exists provided A and B are simply connected domains containing the origin. Moreover, T is determined explicitly by means of an integral form. To this aim we prove an alternative representation of the star product A*B of any sets A,B⊂ℂ containing the origin. We also touch the problem of holomorphic extensibility of Hadamard product.
Keywords: Hadamard product, holomorphic extension, star product, Hadamard multiplication theorem
@article{AUM_2021_75_2_a5,
     author = {Parol, Maciej and Partyka, Dariusz},
     title = {Contribution to the {Hadamard} multiplication theorem},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {94--107},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a5/}
}
TY  - JOUR
AU  - Parol, Maciej
AU  - Partyka, Dariusz
TI  - Contribution to the Hadamard multiplication theorem
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2021
SP  - 94
EP  - 107
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a5/
LA  - en
ID  - AUM_2021_75_2_a5
ER  - 
%0 Journal Article
%A Parol, Maciej
%A Partyka, Dariusz
%T Contribution to the Hadamard multiplication theorem
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2021
%P 94-107
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a5/
%G en
%F AUM_2021_75_2_a5
Parol, Maciej; Partyka, Dariusz. Contribution to the Hadamard multiplication theorem. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 94-107. http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a5/

[1] Grosse-Erdmann, K. G., On the Borel–Okada theorem and the Hadamard multiplication theorem, Complex Variables Theory Appl. 22 (1993), 101–112.

[2] Hadamard, J., Theoreme sur les series entieres, Acta Math. 22 (1899), 55–63 (French).

[3] Hille, E., Analytic Function Theory, Vol. II, Chelsea Publishing Company, New York, 1959.

[4] Kuratowski, K., Topology, Vol II, PWN, Warszawa, 1968.

[5] Levinson, N., Redheffer, R. M., Complex Variables, Holden-Day, Inc., San Francisco, Calif.–Cambridge–Amsterdam, 1970.

[6] Lorson, T., Hadamard Convolution Operators on Spaces of Holomorphic Functions, Dissertation, University of Trier, 2013.

[7] Lorson, T., Muller, J., Convolution operators on spaces of holomorphic functions, Studia Math. 227 (2015), 111–131.

[8] Muller, J., The Hadamard multiplication theorem and applications in summability theory, Complex Variables Theory Appl. 18 (1992), 155–166.

[9] Muller, J., Pohlen, T., The Hadamard product on open sets in the extended plane, Complex Anal. Oper. Theor. 6 (2012), 257–274.

[10] Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill International Editions, Mathematics Series, McGraw-Hill Book Company, Singapore, 1987.