Three algebraic number systems based on the q-addition with applications
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 46-71.

Voir la notice de l'article provenant de la source Library of Science

In the spirit of our earlier articles on q-ω special functions, the purpose of this article is to present many new q-number systems, which are based on the q-addition, which was introduced in our previous articles and books. First, we repeat the concept biring, in order to prepare for the introduction of the q-integers, which extend the q-natural numbers from our previous book. We formally introduce a q-logarithm for the q-exponential function for later use. In order to find q-analogues of the corresponding formulas for the generating functions and q-trigonometric functions, we also introduce q-rational numbers. Then the so-called q-real numbers ℝ_⊕_q, with a norm, a q-deformed real line, and with three inequalities, are defined. The purpose of the more general q-real numbers ℝ_q is to allow the other q-addition too. The closely related JHC q-real numbers ℝ_⊞_q have applications to several q-Euler integrals. This brings us to a vector version of the q-binomial theorem from a previous paper, which is associated with a special case of the q-Lauricella function. New q-trigonometric function formulas are given to show the application of this umbral calculus. Then, some equalities between q-trigonometric zeros and extreme values are proved. Finally, formulas and graphs for q-hyperbolic functions are shown.
Keywords: q-real numbers, q-rational numbers, q-integers, q-trigonometric functions, biring, semiring
@article{AUM_2021_75_2_a3,
     author = {Ernst, Thomas},
     title = {Three algebraic number systems based on the q-addition with applications},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {46--71},
     publisher = {mathdoc},
     volume = {75},
     number = {2},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/}
}
TY  - JOUR
AU  - Ernst, Thomas
TI  - Three algebraic number systems based on the q-addition with applications
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2021
SP  - 46
EP  - 71
VL  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/
LA  - en
ID  - AUM_2021_75_2_a3
ER  - 
%0 Journal Article
%A Ernst, Thomas
%T Three algebraic number systems based on the q-addition with applications
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2021
%P 46-71
%V 75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/
%G en
%F AUM_2021_75_2_a3
Ernst, Thomas. Three algebraic number systems based on the q-addition with applications. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 46-71. http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/

[1] Appell, P. , Kampe de Feriet, J., Fonctions hypergeometriques et hyperspheriques, Gauthier-Villars, Paris, 1926 (French).

[2] Burchnall, J. L., Chaundy, T. W., Expansions of Appell’s double hypergeometric functions II, Q. J. Math. 12 (1941), 112–128.

[3] Erdelyi, A., Integraldarstellungen hypergeometrischer Funktionen, Q. J. Math. 8 (1937), 267–277 (German).

[4] Ernst, T., A comprehensive treatment of q-calculus, Birkhauser, 2012.

[5] Ernst, T., Convergence aspects for q-Lauricella functions I, Adv. Studies Contemp. Math. 22 (1) (2012), 35–50.

[6] Ernst, T., Convergence aspects for q-Appell functions I, J. Indian Math. Soc., New Ser. 81 (1–2) (2014), 67–77.

[7] Ernst, T., Multiplication formulas for q-Appell polynomials and the multiple q-power sums, Ann. Univ. Mariae Curie-Skłodowska Sect. A 70 (1) (2016), 1–18.

[8] Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special cases, Le Matematiche 73 (1) (2018), 3–24.

[9] Ernst, T., On Eulerian q-integrals for single and multiple q-hypergeometric series, Commun. Korean Math. Soc. 33 (1) (2018), 179–196.

[10] Ernst, T., On the complex q-Appell polynomials, Ann. Univ. Mariae Curie-Skłodowska Sect. A 74 (1) (2020), 31–43.

[11] Ernst, T., On the exponential and trigonometric \(q,\omega\)-special functions, in: Algebraic Structures and Applications, Springer, Cham, 2020, 625–651.

[12] Exton, H., Multiple Hypergeometric Functions and Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York–London–Sydney, 1976.

[13] Exton, H., Handbook of Hypergeometric Integrals, Chichester; Halsted Press [John Wiley Sons, Inc.], New York–London–Sydney, 1978.

[14] Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7 (1893), 111–158 (Italian).

[15] Nagell, T., Larobok i Algebra, Almqvist Wiksells, Uppsala 1949 (Swedish).

[16] Rainville, E. D., Special Functions, Reprint of 1960 first edition. Chelsea Publishing Co., Bronx, N.Y., 1971.

[17] Saran, S., Transformations of certain hypergeometric functions of three variables, Acta Math. 93 (1955), 293–312.

[18] Winter, A., Uber die logarithmischen Grenzfalle der hypergeometrischen Differentialgleichungen mit zwei endlichen singul¨aren Punkten, Dissertation, Kiel, 1905 (German).