Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2021_75_2_a3, author = {Ernst, Thomas}, title = {Three algebraic number systems based on the q-addition with applications}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {46--71}, publisher = {mathdoc}, volume = {75}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/} }
TY - JOUR AU - Ernst, Thomas TI - Three algebraic number systems based on the q-addition with applications JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2021 SP - 46 EP - 71 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/ LA - en ID - AUM_2021_75_2_a3 ER -
Ernst, Thomas. Three algebraic number systems based on the q-addition with applications. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 46-71. http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a3/
[1] Appell, P. , Kampe de Feriet, J., Fonctions hypergeometriques et hyperspheriques, Gauthier-Villars, Paris, 1926 (French).
[2] Burchnall, J. L., Chaundy, T. W., Expansions of Appell’s double hypergeometric functions II, Q. J. Math. 12 (1941), 112–128.
[3] Erdelyi, A., Integraldarstellungen hypergeometrischer Funktionen, Q. J. Math. 8 (1937), 267–277 (German).
[4] Ernst, T., A comprehensive treatment of q-calculus, Birkhauser, 2012.
[5] Ernst, T., Convergence aspects for q-Lauricella functions I, Adv. Studies Contemp. Math. 22 (1) (2012), 35–50.
[6] Ernst, T., Convergence aspects for q-Appell functions I, J. Indian Math. Soc., New Ser. 81 (1–2) (2014), 67–77.
[7] Ernst, T., Multiplication formulas for q-Appell polynomials and the multiple q-power sums, Ann. Univ. Mariae Curie-Skłodowska Sect. A 70 (1) (2016), 1–18.
[8] Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special cases, Le Matematiche 73 (1) (2018), 3–24.
[9] Ernst, T., On Eulerian q-integrals for single and multiple q-hypergeometric series, Commun. Korean Math. Soc. 33 (1) (2018), 179–196.
[10] Ernst, T., On the complex q-Appell polynomials, Ann. Univ. Mariae Curie-Skłodowska Sect. A 74 (1) (2020), 31–43.
[11] Ernst, T., On the exponential and trigonometric \(q,\omega\)-special functions, in: Algebraic Structures and Applications, Springer, Cham, 2020, 625–651.
[12] Exton, H., Multiple Hypergeometric Functions and Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley Sons, Inc.], New York–London–Sydney, 1976.
[13] Exton, H., Handbook of Hypergeometric Integrals, Chichester; Halsted Press [John Wiley Sons, Inc.], New York–London–Sydney, 1978.
[14] Lauricella, G., Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7 (1893), 111–158 (Italian).
[15] Nagell, T., Larobok i Algebra, Almqvist Wiksells, Uppsala 1949 (Swedish).
[16] Rainville, E. D., Special Functions, Reprint of 1960 first edition. Chelsea Publishing Co., Bronx, N.Y., 1971.
[17] Saran, S., Transformations of certain hypergeometric functions of three variables, Acta Math. 93 (1955), 293–312.
[18] Winter, A., Uber die logarithmischen Grenzfalle der hypergeometrischen Differentialgleichungen mit zwei endlichen singul¨aren Punkten, Dissertation, Kiel, 1905 (German).