Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2021_75_2_a2, author = {Dragomir, Silvestru Sever}, title = {Some {Hermite{\textendash}Hadamard} type inequalities for the square norm in {Hilbert} spaces}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {31--44}, publisher = {mathdoc}, volume = {75}, number = {2}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a2/} }
TY - JOUR AU - Dragomir, Silvestru Sever TI - Some Hermite–Hadamard type inequalities for the square norm in Hilbert spaces JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2021 SP - 31 EP - 44 VL - 75 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a2/ LA - en ID - AUM_2021_75_2_a2 ER -
%0 Journal Article %A Dragomir, Silvestru Sever %T Some Hermite–Hadamard type inequalities for the square norm in Hilbert spaces %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2021 %P 31-44 %V 75 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a2/ %G en %F AUM_2021_75_2_a2
Dragomir, Silvestru Sever. Some Hermite–Hadamard type inequalities for the square norm in Hilbert spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 2, pp. 31-44. http://geodesic.mathdoc.fr/item/AUM_2021_75_2_a2/
[1] Barnett, N. S., Cerone, P., Dragomir, S. S., Some new inequalities for Hermite-Hadamard divergence in information theory, in: Stochastic Analysis and Applications, Vol. 3, Nova Sci. Publ., Hauppauge, NY, 2003, 7–19. Preprint RGMIA Res. Rep. Coll. 5 (2002), Art. 8, 11 pp. [Online https://rgmia.org/papers/v5n4/NIHHDIT.pdf]
[2] Cerone, P., Dragomir, S. S., Mathematical Inequalities. A Perspective, CRC Press, Boca Raton, FL, 2011.
[3] Dragomir, S. S., An inequality improving the first Hermite–Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (2) (2002), Art. 31, 8 pp.
[4] Dragomir, S. S., An inequality improving the second Hermite-Hadamard inequality for convex functions defined on linear spaces and applications for semi-inner products, J. Inequal. Pure Appl. Math. 3 (3) (2002), Art. 35, 8 pp.
[5] Dragomir, S. S., Operator Inequalities of Ostrowski and Trapezoidal Type, Springer Briefs in Mathematics. Springer, New York, 2012.
[6] Dragomir, S. S., Operator Inequalities of the Jensen, Cebysev and Gruss Type, Springer Briefs in Mathematics. Springer, New York, 2012.
[7] Dragomir, S. S., Pearce, C. E. M., Selected Topics on Hermite–Hadamard Inequalities and Applications, RGMIA Monographs, 2000. [Online http://rgmia.org/monographs/hermite hadamard.html]
[8] Pecaric, J., Dragomir, S. S., A generalization of Hadamard’s inequality for isotonic linear functionals, Radovi Mat. (Sarajevo) 7 (1991), 103–107.
[9] Pecaric, J. E., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press Inc., Boston, MA, 1992.