Regular matrix methods of summability and real interpolation
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 53-59.

Voir la notice de l'article provenant de la source Library of Science

We show that the Banach–Saks property with respect to a regular positive matrix method of summability is inherited by the real interpolation spaces from a space forming the interpolation family and possessing this property. The proof refers to the Galvin–Prikry theorem on Ramsey sets. The results apply to several matrix methods of summability, such as Cesaro, Nørlund or Holder methods.
Keywords: Real interpolation spaces, regular methods of summability, Banach–Saks property
@article{AUM_2021_75_1_a3,
     author = {Kryczka, Andrzej and Kurlej, Konrad},
     title = {Regular matrix methods of summability and real interpolation},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {53--59},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a3/}
}
TY  - JOUR
AU  - Kryczka, Andrzej
AU  - Kurlej, Konrad
TI  - Regular matrix methods of summability and real interpolation
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2021
SP  - 53
EP  - 59
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a3/
LA  - en
ID  - AUM_2021_75_1_a3
ER  - 
%0 Journal Article
%A Kryczka, Andrzej
%A Kurlej, Konrad
%T Regular matrix methods of summability and real interpolation
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2021
%P 53-59
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a3/
%G en
%F AUM_2021_75_1_a3
Kryczka, Andrzej; Kurlej, Konrad. Regular matrix methods of summability and real interpolation. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 53-59. http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a3/

[1] Beauzamy, B., Propriete de Banach–Saks, Studia Math. 66 (1979/80), 227–235.

[2] Boos, J., Classical and Modern Methods in Summability. Assisted by Peter Cass, Oxford University Press, Oxford, 2000.

[3] DeVito, C. L., Functional Analysis, Academic Press, Inc., New York–London, 1978.

[4] Galvin, F., Prikry, K., Borel sets and Ramsey’s theorem, J. Symbolic Logic 38 (1973), 193–198.

[5] Hardy, G. H., Divergent Series, the Clarendon Press, Oxford, 1949.

[6] Kryczka, A., Kurlej, K., Regular methods of summability for direct sums of Banach spaces, J. Math. Anal. Appl. 494 no. 1, (2021), 124636.

[7] Kutzarova, D., Nikolova, L. I., Prus, S., Infinite-dimensional geometric properties of real interpolation spaces, Math. Nachr. 191 (1998), 215–228.

[8] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Springer-Verlag, New York, 1977.

[9] Lions, J.-L., Peetre, J., Sur une classe d’espaces d’interpolation, Inst. Hautes Etudes Sci. Publ. Math. 19 (1964), 5–68.

[10] Pietsch, A., History of Banach Spaces and Linear Operators, Birkhauser, Boston, 2007.

[11] Spar, G., Interpolation of several Banach spaces, Ann. Mat. Pura Appl. 99 (1974), 247–316.

[12] Yoshikawa, A., Sur la theorie d’espaces d’interpolation—les espaces de moyenne de plusieurs espaces de Banach, J. Fac. Sci. Univ. Tokyo 16 (1970), 407–468.