Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2021_75_1_a1, author = {Jastrz\k{e}bska, Magdalena and Partyka, Dariusz}, title = {Exponential representations of injective continuous mappings in radial sets}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {37--51}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/} }
TY - JOUR AU - Jastrzębska, Magdalena AU - Partyka, Dariusz TI - Exponential representations of injective continuous mappings in radial sets JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2021 SP - 37 EP - 51 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/ LA - en ID - AUM_2021_75_1_a1 ER -
%0 Journal Article %A Jastrzębska, Magdalena %A Partyka, Dariusz %T Exponential representations of injective continuous mappings in radial sets %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2021 %P 37-51 %V 75 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/ %G en %F AUM_2021_75_1_a1
Jastrzębska, Magdalena; Partyka, Dariusz. Exponential representations of injective continuous mappings in radial sets. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/
[1] Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, New Jersey–Toronto–New York–London, 1966.
[2] Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., McGraw-Hill, Inc., New York, 1979.
[3] Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge,2004.
[4] Eilenberg, S., Transformations continues en circonfernce et la topologie du plan, Fund. Math. 26 (1936), 61–112.
[5] Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002.
[6] Kosniowski, C., A First Course in Algebraic Topology, Cambridge University Press, Cambridge, 1980.
[7] Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12 (1987), 19–24.
[8] Kuratowski, K., Introduction to Set Theory and Topology, 2nd English ed., Pergamon Press, Oxford, 2014.
[9] Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd ed., Springer, Berlin, 1973.
[10] Mori, A., On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56–77.
[11] Partyka, D., The generalized Neumann–Poincare operator and its spectrum, Dissertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997.
[12] Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill International Editions, Mathematics Series, McGraw-Hill Book Company, Singapore, 1987.