Exponential representations of injective continuous mappings in radial sets
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 37-51.

Voir la notice de l'article provenant de la source Library of Science

By a radial set we understand a non-empty set A ⊂ℂ∖{0} such that for every point z∈ A the circle with centre at the origin and passing through z is included in A. We show in a detailed manner that every continuous and injective function F : A →ℂ∖{0} can be represented by means of the natural exponential function exp and a certain continuous function : Ei(A) →ℂ, where Ei(A) is the set of all z ∈ℂ with the property exp(iz) ∈ A. The representation is given by F(exp(iz)) = exp(i (z)) for z ∈Ei(A). We also touch the problem of the injectivity of .
Keywords: Angular parametrization, cuttings of the plane, functional equations, fundamental group of the unit circle, lifted mapping, logarithmic functions of complex variable, quasiconformal mappings
@article{AUM_2021_75_1_a1,
     author = {Jastrz\k{e}bska, Magdalena and Partyka, Dariusz},
     title = {Exponential representations of injective continuous mappings in radial sets},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {37--51},
     publisher = {mathdoc},
     volume = {75},
     number = {1},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/}
}
TY  - JOUR
AU  - Jastrzębska, Magdalena
AU  - Partyka, Dariusz
TI  - Exponential representations of injective continuous mappings in radial sets
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2021
SP  - 37
EP  - 51
VL  - 75
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/
LA  - en
ID  - AUM_2021_75_1_a1
ER  - 
%0 Journal Article
%A Jastrzębska, Magdalena
%A Partyka, Dariusz
%T Exponential representations of injective continuous mappings in radial sets
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2021
%P 37-51
%V 75
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/
%G en
%F AUM_2021_75_1_a1
Jastrzębska, Magdalena; Partyka, Dariusz. Exponential representations of injective continuous mappings in radial sets. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a1/

[1] Ahlfors, L. V., Lectures on Quasiconformal Mappings, D. Van Nostrand, Princeton, New Jersey–Toronto–New York–London, 1966.

[2] Ahlfors, L. V., Complex Analysis: An Introduction to the Theory of Analytic Functions of One Complex Variable, 3rd ed., McGraw-Hill, Inc., New York, 1979.

[3] Duren, P., Harmonic Mappings in the Plane, Cambridge University Press, Cambridge,2004.

[4] Eilenberg, S., Transformations continues en circonfernce et la topologie du plan, Fund. Math. 26 (1936), 61–112.

[5] Hatcher, A., Algebraic Topology, Cambridge University Press, Cambridge, 2002.

[6] Kosniowski, C., A First Course in Algebraic Topology, Cambridge University Press, Cambridge, 1980.

[7] Krzyż, J. G., Quasicircles and harmonic measure, Ann. Acad. Sci. Fenn. Ser. A. I. Math. 12 (1987), 19–24.

[8] Kuratowski, K., Introduction to Set Theory and Topology, 2nd English ed., Pergamon Press, Oxford, 2014.

[9] Lehto, O., Virtanen, K. I., Quasiconformal Mappings in the Plane, 2nd ed., Springer, Berlin, 1973.

[10] Mori, A., On quasi-conformality and pseudo-analyticity, Trans. Amer. Math. Soc. 84 (1957), 56–77.

[11] Partyka, D., The generalized Neumann–Poincare operator and its spectrum, Dissertationes Math., vol. 366, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1997.

[12] Rudin, W., Real and Complex Analysis, third ed., McGraw-Hill International Editions, Mathematics Series, McGraw-Hill Book Company, Singapore, 1987.