Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2021_75_1_a0, author = {Br\'od, Dorota and Szynal-Liana, Anetta and W{\l}och, Iwona}, title = {On a new two-parameter generalization of dual-hyperbolic {Jacobsthal} numbers}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {1--14}, publisher = {mathdoc}, volume = {75}, number = {1}, year = {2021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a0/} }
TY - JOUR AU - Bród, Dorota AU - Szynal-Liana, Anetta AU - Włoch, Iwona TI - On a new two-parameter generalization of dual-hyperbolic Jacobsthal numbers JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2021 SP - 1 EP - 14 VL - 75 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a0/ LA - en ID - AUM_2021_75_1_a0 ER -
%0 Journal Article %A Bród, Dorota %A Szynal-Liana, Anetta %A Włoch, Iwona %T On a new two-parameter generalization of dual-hyperbolic Jacobsthal numbers %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2021 %P 1-14 %V 75 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a0/ %G en %F AUM_2021_75_1_a0
Bród, Dorota; Szynal-Liana, Anetta; Włoch, Iwona. On a new two-parameter generalization of dual-hyperbolic Jacobsthal numbers. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 75 (2021) no. 1, pp. 1-14. http://geodesic.mathdoc.fr/item/AUM_2021_75_1_a0/
[1] Akar, M., Yuce S., Sahin, S., On the dual hyperbolic numbers and the complex hyperbolic numbers, Journal of Computer Science Computational Mathematics 8 (1) (2018) DOI: 10.20967/jcscm.2018.01.001.
[2] Bród, D., On a two-parameter generalization of Jacobsthal numbers and its graph interpretation, Ann. Univ. Mariae Curie-Skłodowska Sect. A 72 (2) (2018), 21–28.
[3] Bród, D., On split r-Jacobsthal quaternions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 74 (1) (2020), 1–14.
[4] Bród, D., Szynal-Liana, A., Włoch, I., Two generalizations of dual-hyperbolic balancing numbers, Symmetry 12 (11) (2020), 1866.
[5] Cihan, A., Azak, A. Z., Gungor, M. A., Tosun, M., A study on dual hyperbolic Fibonacci and Lucas numbers, An. Stiint¸. Univ. “Ovidius” Constant¸a Ser. Mat. 27 (1) (2019), 35–48.
[6] Clifford, W. K., Preliminary sketch of biquaternions, Proc. Lond. Math. Soc. 4 (1873), 381–395.
[7] Cockle, J., On certain functions resembling quaternions, and on a new imaginary in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 33 (1848), 435–439.
[8] Cockle, J., On a new imaginary in algebra, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34 (1849), 37–47.
[9] Cockle, J., On the symbols of algebra, and on the theory of tesarines, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 34 (1849), 406–410.
[10] Cockle, J., On impossible equations, on impossible quantities, and on tesarines, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 37 (1850), 281–283.
[11] Dasdemir, A., The representation, generalized Binet formula and sums of the generalized Jacobsthal p-sequence, Hittite Journal of Science and Engineering 3 (2) (2016), 99–104.
[12] Falcon, S., On the k-Jacobsthal numbers, American Review of Mathematics and Statistics 2 (1) (2014), 67–77.
[13] Horadam, A. F., Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70 (1963), 289–291.
[14] Kizilates, C., Kone, T., On quaternions with incomplete Fibonacci and Lucas numbers components, Util. Math. 110 (2019), 263–269.
[15] Kizilates, C., Kone, T., On higher order Fibonacci quaternions, J. Anal. (2021), DOI: 10.1007/s41478-020-00295-1.
[16] Kizilates, C., Kone, T., On higher order Fibonacci hyper complex numbers, Chaos Solitons Fractals 148 (2021), 111044.
[17] Polatli, E., Kizilates, C., Kesim S., On split k-Fibonacci and k-Lucas quaternions, Adv. Appl. Clifford Algebr. 26 (2016), 353–362.
[18] Rochon, D., Shapiro, M., On algebraic properties of bicomplex and hyperbolic numbers, Analele Universitatii Oradea, Fascicola Matematica 11 (2004), 71–110.
[19] Soykan, V., Tasdemir, E., Okumus, I., On dual hyperbolic numbers with generalized Jacobsthal numbers components, preprint.
[20] Szynal-Liana, A., Włoch, I., A note on Jacobsthal quaternions, Adv. Appl. Clifford Algebr. 26 (2016), 441–447.
[21] Szynal-Liana, A., Włoch, I., The Pell quaternions and the Pell octonions, Adv. Appl. Clifford Algebr. 26 (2016), 435–440.
[22] Szynal-Liana, A., Włoch, I., Hypercomplex numbers of the Fibonacci type, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2019.
[23] Uygun, S., The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences, Appl. Math. Sci. 9 (70) (2015), 3467–3476.