Kaplan classes of a certain family of functions
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We give the complete characterization of members of Kaplan classes of products of power functions with all zeros symmetrically distributed in 𝕋 := {z ∈ℂ : |z| = 1} and weakly monotonic sequence of powers. In this way we extend Sheil-Small’s theorem. We apply the obtained result to study univalence of antiderivative of these products of power functions.
Keywords: Kaplan classes, univalence, close-to-convex functions, critical points
@article{AUM_2020_74_2_a5,
     author = {Ignaciuk, Szymon and Parol, Maciej},
     title = {Kaplan classes of a certain family of functions},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {74},
     number = {2},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a5/}
}
TY  - JOUR
AU  - Ignaciuk, Szymon
AU  - Parol, Maciej
TI  - Kaplan classes of a certain family of functions
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2020
VL  - 74
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a5/
LA  - en
ID  - AUM_2020_74_2_a5
ER  - 
%0 Journal Article
%A Ignaciuk, Szymon
%A Parol, Maciej
%T Kaplan classes of a certain family of functions
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2020
%V 74
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a5/
%G en
%F AUM_2020_74_2_a5
Ignaciuk, Szymon; Parol, Maciej. Kaplan classes of a certain family of functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2. http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a5/

[1] Goodman, A. W., Univalent functions. Vol. II, Mariner Pub. Co., Inc., Tampa, Florida, 1983.

[2] Ignaciuk, S., Parol, M., Zeros of complex polynomials and Kaplan classes, Anal. Math. 46 (2020), 769–779.

[3] Jahangiri, M., A gap condition for the zeroes of certain polynomials in Kaplan classes K(\alpha, \beta), Mathematika 34 (1987), 53–63.

[4] Kim, Y. J., Merkes, E. P., On certain convex sets in the space of locally schlicht functions, Trans. Amer. Math. Soc. 196 (1974), 217–224.

[5] Royster, W. C., On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.

[6] Ruscheweyh, S., Convolutions in Geometric Function Theory, Seminaire de Math. Sup. 83, Presses de l’Universite de Montreal, Montreal, 1982.

[7] Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002.