Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_2_a5, author = {Ignaciuk, Szymon and Parol, Maciej}, title = {Kaplan classes of a certain family of functions}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a5/} }
Ignaciuk, Szymon; Parol, Maciej. Kaplan classes of a certain family of functions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2. http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a5/
[1] Goodman, A. W., Univalent functions. Vol. II, Mariner Pub. Co., Inc., Tampa, Florida, 1983.
[2] Ignaciuk, S., Parol, M., Zeros of complex polynomials and Kaplan classes, Anal. Math. 46 (2020), 769–779.
[3] Jahangiri, M., A gap condition for the zeroes of certain polynomials in Kaplan classes K(\alpha, \beta), Mathematika 34 (1987), 53–63.
[4] Kim, Y. J., Merkes, E. P., On certain convex sets in the space of locally schlicht functions, Trans. Amer. Math. Soc. 196 (1974), 217–224.
[5] Royster, W. C., On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387.
[6] Ruscheweyh, S., Convolutions in Geometric Function Theory, Seminaire de Math. Sup. 83, Presses de l’Universite de Montreal, Montreal, 1982.
[7] Sheil-Small, T., Complex Polynomials, Cambridge University Press, Cambridge, 2002.