Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_2_a4, author = {Saker, S. H. and Logaarasi, K. and Sadhasivam, V.}, title = {Forced oscillation of conformable fractional partial delay differential equations with impulses}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a4/} }
TY - JOUR AU - Saker, S. H. AU - Logaarasi, K. AU - Sadhasivam, V. TI - Forced oscillation of conformable fractional partial delay differential equations with impulses JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2020 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a4/ LA - en ID - AUM_2020_74_2_a4 ER -
%0 Journal Article %A Saker, S. H. %A Logaarasi, K. %A Sadhasivam, V. %T Forced oscillation of conformable fractional partial delay differential equations with impulses %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2020 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a4/ %G en %F AUM_2020_74_2_a4
Saker, S. H.; Logaarasi, K.; Sadhasivam, V. Forced oscillation of conformable fractional partial delay differential equations with impulses. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2. http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a4/
[1] Atangana, A., Baleanu, D., Alsaedi, A., New properties of conformable derivative, Open Math. 13 (2015), 889–898.
[2] Bainov, D. D., Simenov, P.S., Impulsive Differential Equations: Periodic Solutions and Applications, Longman, Harlow, 1993.
[3] Chatzarakis, G. E., Logaarasi, K., Raja, T., Sadhasivam, V., Interval Oscillation Criteria for Impulsive Conformable Partial Differential Equations, Appl. Anal. Discrete Math. 13 (2019), 325–345.
[4] Chatzarakis, G. E., Logaarasi, K., Raja, T., Sadhasivam, V., Interval oscillation criteria for conformable fractional differential equations with impulses, Applied Mathematics E-Notes, 19 (2019), 354–369.
[5] Chen, D. X., Oscillation criteria of fractional differential equations, Adv. Diff. Equ. 2012 (2012), 1–10.
[6] Delbosco, D., Rodino, L., Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (2) (1996), 609–625.
[7] El-Sayed, A. M. A., Fractional-order diffusion-wave equation, Internat. J. Theoret. Phys. 35 (2) (1996), 311–322.
[8] V. Gafiychuk, B. Datsko and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math. 220 (1–2) (2008), 215–225.
[9] Grace, S. R., Agarwal, R. P.,Wong, P. J. Y., Zafer, A., On the oscillation of fractional differential equations, Frac. Calc. Appl. Anal. 15 (2012), 222–231.
[10] He, J., Some applications of nonlinear fractional differential equations and their approximations, Bulletin of Science and Technology 15 (1999), 86–90.
[11] Kalaimani, T., Raja, T., Sadhasivam, V., Saker, S.H., Oscillation of impulsive neutral partial differential equations with distributed deviating arguments, Bul. Math. Soc. Sci. Math. Roumanie (N. S.) 61(109) (2018), 51–68.
[12] Khalil, R. R., Horani, M. Al., Yousef, A., Sababheh, M., A new definition of fractional derivative, J. Com. Appl. Math. 264 (2014), 65–70.
[13] Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
[14] Kubiaczyk, I., Saker, S. H., Oscillation of parabolic delay differential equations with positive and negative coefficients, Comment. Math. 42 (2002), 221–236.
[15] Kubiaczyk, I., Saker, S. H., Oscillation of delay parabolic differential equations with several coefficients, J. Comp. Appl. Math. 147 (2) (2002), 263–275.
[16] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S., Theory of Impulsive Differential Equations, World Scientific Publishers, Singapore, 1989.
[17] Li, Q. L., Cheung, W. S., Interval oscillation criteria for second-order forced delay differential equations under impulsive effects, Electron. J. Qual. Theor. Diff. Eq. 2013 (43) (2013), 1–11.
[18] Metzler, R., Schick, W., Kilian, H. G, Nonnenmacher, T. F., Relaxation in filled polymers: a fractional calculus approach, Journal of Chemical Physics 103 (1995), 7180–7186.
[19] Muthulakshmi, V., Thandapani, E., Interval criteria for oscillation of second-order impulsive differential equation with mixed nonlinearities, ,Electron. J. Differ. Eq., 2011(40) (2011), 1–14.
[20] Ozbekler, A., Zafer, A., Oscillation of solutions of second order mixed nonlinear differential equations under impulsive perturbations, Comput. Math. Appl. 61 (2011), 933–940.
[21] Philos, Ch. G., Oscillation theorems for linear differential equations of second order, Arch. Math. 53 (1989), 482–492.
[22] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.
[23] Ryabov, Y. E., Puzenko, A., Damped oscillations in view of the fractional oscillator equation, Physics Review B 66 (2002), 184–201.
[24] Sadhasivam, V., Logaarasi ,K., Raja, T., Interval oscillation criteria for impulsive partial differential equations, Int. J. Math. and Appl. 6(1-B) (2018), 229–242.
[25] Sadhasivam, V., Raja, T., Logaarasi, K., On the interval oscillation of impulsive partial differential equations with damping term, Int. J. Engg. Sci. Math. 6 (2017), 328–340.
[26] Saker, S. H., Oscillation of hyperbolic nonlinear differential equations with deviating arguments, Publ. Math. Debr. 62 (2003), 165–185.
[27] Samko, S. G., Kilbas, A. A., Maritchev, O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Sci. Publ., Amsterdam, 1993.
[28] Thandapani, E., Manju, E., Pinelas, S., Interval oscillation criteria for second order forced impulsive delay differential equations with damping term, Springer Plus 5 (2016), 1–16.
[29] Vladimirov, V. S., Equations of Mathematical Physics. Translated from the Russian by Eugene Yankovsky, Nauka, Moscow, 1964.
[30] Wu, J. H., Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996.
[31] Xiaoliang, Z., Zhonghai, G., Wu-Sheng, W., Interval oscillation criteria for superhalf-linear impulsive differential equations with delay, J. Appl. Math. (2012), art. id. 285051, 22 pp.
[32] Yoshida, N., Oscillation Theory of Partial Differential Equations, World Scientific, Singapore, 2008.