Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_2_a2, author = {Yazdi, M.}, title = {A new iterative method for generalized equilibrium and constrained convex minimization problems}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {81--99}, publisher = {mathdoc}, volume = {74}, number = {2}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a2/} }
TY - JOUR AU - Yazdi, M. TI - A new iterative method for generalized equilibrium and constrained convex minimization problems JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2020 SP - 81 EP - 99 VL - 74 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a2/ LA - en ID - AUM_2020_74_2_a2 ER -
%0 Journal Article %A Yazdi, M. %T A new iterative method for generalized equilibrium and constrained convex minimization problems %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2020 %P 81-99 %V 74 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a2/ %G en %F AUM_2020_74_2_a2
Yazdi, M. A new iterative method for generalized equilibrium and constrained convex minimization problems. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 2, pp. 81-99. http://geodesic.mathdoc.fr/item/AUM_2020_74_2_a2/
[1] Aoyama, K., Kimura, Y., Takahashi, W., Toyoda, M., Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal. 67 (2007), 2350–2360.
[2] Blum, E., Oettli, W., From optimization and variatinal inequalities to equilibrium problems, Math. Student. 63 (1994), 123–145.
[3] Bertsekas, D. P., Gafin, E. M., Projection methods for variational inequalities with applications to the traffic assignment problem, Math. Program. Stud. 17 (1982), 139–159.
[4] Byrne, C., A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl. 20 (2004), 103–120.
[5] Combettes, P. L., Hirstoaga, S. A., Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
[6] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge Stud. Adv. Math. 28, Cambridge Univ. Press, Cambridge, 1990.
[7] Han, D., Lo, H. K., Solving non-additive traffic assignment problems: A descent method for co-coercive variational inequalities, Eur. J. Oper. Res. 159 (2004), 529–544.
[8] Jung, J. S., A general composite iterative method for equilibrium problems and fixed point problems, J. Comput. Anal. Appl. 12 (1-A) (2010), 124–140.
[9] Moudafi, A., Thera, M., Proximal and dynamical approaches to equilibrium problems, in: Ill-posed Variational Problems and Regularization Techniques, Lecture Notes in Economics and Mathematical Systems, 477, Springer-Verlag, Berlin, 1999, 187–201.
[10] Peng, J.-W., Yao, J.-Ch., A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings, Nonlinear Anal. 71 (12) (2009), 6001–6010.
[11] Plubtieg, S., Punpaeng, R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 336 (2007), 455–469.
[12] Razani, A., Yazdi, M., Viscosity approximation method for equilibrium and fixed point problems, Fixed Point Theory. 14 (2) (2013), 455–472.
[13] Tian, M., Liu, L., Iterative algorithms based on the viscosity approximation method for equilibrium and constrained convex minimization problem, Fixed Point Theory Appl. 2012:201 (2012), 1–17.
[14] Wang, S., Hu, Ch., Chai, G., Strong convergence of a new composite iterative method for equilibrium problems and fixed point problems, Appl. Math. Comput. 215 (2010), 3891–3898.
[15] Xu, H.-K., Iterative algorithms for nonlinear operators, J. London Math. Soc. (2) 66 (2002), 240–256.
[16] Xu, H.-K., An iterative approach to quadratic optimization, J. Optim. Theory Appl.116 (2003), 659–678.
[17] Xu, H.-K., Averaged mappings and the gradient-projection algorithm, J. Optim. Theory Appl. 150 (2011), 360–378.
[18] Yazdi, M., New iterative methods for equilibrium and constrained convex minimization problems, Asian-Eur. J. Math. 12 (3) (2019), 12 pp.