Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2020_74_1_a4, author = {Br\'od, Dorota}, title = {On split {r-Jacobsthal} quaternions}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {74}, number = {1}, year = {2020}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a4/} }
Bród, Dorota. On split r-Jacobsthal quaternions. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1. http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a4/
[1] Akyigit, M., Kosal, H. H., Tosun, M., Split Fibonacci quaternions, Adv. Appl. Clifford Algebr. 23 (2013), 535–545.
[2] Bród, D., On a new Jacobsthal-type sequence, Ars Combin., in press.
[3] Cockle, J., On systems of algebra involving more than one imaginary and on equations of the fifth degree, Phil. Mag. 35 (3) (1849), 434–435.
[4] Dasdemir, A., The representation, generalized Binet formula and sums of the generalized Jacobsthal p-sequence, Hittite Journal of Science and Engineering 3 (2) (2016), 99–104.
[5] Falcon, S., On the k-Jacobsthal numbers, American Review of Mathematics and Statistics 2 (1) (2014), 67–77.
[6] Horadam, A. F., Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (3) (1965), 161–176.
[7] Horadam, A. F., Complex Fibonacci numbers and Fibonacci quaternions, Amer. Math. Monthly 70 (1963), 289–291.
[8] Kilic, N., On split k-Jacobsthal and k-Jacobsthal–Lucas quaternions, Ars Combin. 142 (2019), 129–139.
[9] Polatli, E., Kizilates, C., Kesim, S., On split k-Fibonacci and k-Lucas quaternions, Adv. Appl. Clifford Algebr. 26 (2016), 353–362.
[10] Tokeser, U., Unal, Z., Bilgici, G., Split Pell and Pell–Lucas quaternions, Adv. Appl. Clifford Algebr. 27 (2017), 1881–1893.
[11] Yagmur, T., Split Jacobsthal and Jacobsthal–Lucas quaternions, Commun. Math. Appl. 10 (3) (2019), 429–438.