On naturality of some construction of connections
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Let F be a bundle functor on the category of all fibred manifolds and fibred maps. Let Γ be a general connection in a fibred manifold pr:Y→ M and ∇ be a classical linear connection on M. We prove that the  well-known general connection ℱ(Γ,∇) in FY→ M is canonical with respect to fibred maps and with respect to natural transformations of bundle functors.
Keywords: General connection, classical linear connection, fibred manifold, bundle functor, natural operator
@article{AUM_2020_74_1_a3,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz},
     title = {On naturality of some construction of connections},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a3/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz
TI  - On naturality of some construction of connections
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2020
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a3/
LA  - en
ID  - AUM_2020_74_1_a3
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz
%T On naturality of some construction of connections
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2020
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a3/
%G en
%F AUM_2020_74_1_a3
Kurek, Jan; Mikulski, Włodzimierz. On naturality of some construction of connections. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1. http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a3/

[1] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry, Interscience Publishers, New York–London, 1963.

[2] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.