Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1, pp. 45-55.

Voir la notice de l'article provenant de la source Library of Science

For any infinite dimensional Banach space there exists a lipschitzian retraction of the closed unit ball B onto the unit sphere S. Lipschitz constants for such retractions are, in general, only roughly estimated. The paper is illustrative. It contains remarks, illustrations and estimates concerning optimal retractions onto spherical caps for sequence spaces with the uniform norm.
Keywords: Retraction, Lipschitz constant, radial projection, truncation, spherical cap
@article{AUM_2020_74_1_a0,
     author = {Goebel, Kazimierz},
     title = {Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     pages = {45--55},
     publisher = {mathdoc},
     volume = {74},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a0/}
}
TY  - JOUR
AU  - Goebel, Kazimierz
TI  - Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2020
SP  - 45
EP  - 55
VL  - 74
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a0/
LA  - en
ID  - AUM_2020_74_1_a0
ER  - 
%0 Journal Article
%A Goebel, Kazimierz
%T Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2020
%P 45-55
%V 74
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a0/
%G en
%F AUM_2020_74_1_a0
Goebel, Kazimierz. Remarks on retracting balls on spherical caps in \(c_{0}\), \(c\), \(l^{\infty }\) spaces. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 74 (2020) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/AUM_2020_74_1_a0/

[1] Annoni, M., Casini, E., An upper bound for the Lipschitz retraction constant in l_1, Studia Math. 180 (2007), 73–76.

[2] Baronti, M., Casini, E., Franchetti, C., The retraction constant in some Banach spaces, J. Approx. Theory 120 (2) (2003), 296–308.

[3] Benyamini, Y., Sternfeld, Y., Spheres in infinite dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439–445.

[4] Casini, E., Piasecki, Ł, The minimal displacement and optimal retraction problems in some Banach spaces, J. Nonlinear Convex Anal. 18 (1) (2017), 61–71.

[5] Chaoha, P., Goebel, K., Termwuttipong, I., Around Ulam question on retractions, Topol. Methods Nonlinear Anal. 40 (2012), 215–224.

[6] Chaoha, P., Intracul, J., Wichramala, W., Lipschitz retractions onto sphere vs spherical cup, Topol. Methods Nonlinear Anal. 52 (2) (2018), 677–691.

[7] Goebel, K., Concise Course of Fixed Point Theorems, Yokohama Publishers, Yokohama, 2002.

[8] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge University Press, Cambridge, 1990.

[9] Goebel, K., Marino, G., Muglia, L., Volpe, R., The retraction constant and minimal displacement characteristic of some Banach spaces, Nonlinear Anal. 67 (2007), 735–744.

[10] Kirk, W. A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer Academic Publishers, Dordrecht, 2001.

[11] Piasecki, Ł, Retracting ball onto sphere in some Banach spaces, Nonlinear Anal. 74 (2) (2011), 396–399.

[12] Piasecki, Ł, Retracting ball onto sphere in BC_0 (R), Topol. Methods Nonlinear Anal. 33 (2) (2009), 307–314.