Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a9, author = {Rosini, Massimiliano}, title = {Systems of conservation laws with discontinuous fluxes and applications to traffic}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a9/} }
TY - JOUR AU - Rosini, Massimiliano TI - Systems of conservation laws with discontinuous fluxes and applications to traffic JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a9/ LA - en ID - AUM_2019_73_2_a9 ER -
Rosini, Massimiliano. Systems of conservation laws with discontinuous fluxes and applications to traffic. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a9/
[1] Adimurthi, Dutta, R., Ghoshal, S. S., Veerappa Gowda, G. D., Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux, Comm. Pure Appl. Math. 64 (1) (2011), 84–115.
[2] Adimurthi, Dutta, R., Gowda, G. D. V., Jaffre, J., Monotone (A,B) entropy stable numerical scheme for scalar conservation laws with discontinuous flux, ESAIM Math. Model. Numer. Anal. 48 (6) (2014), 1725–1755.
[3] Adimurthi, Mishra, S., Gowda, G. D. V., Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ. 2 (4) (2005), 783–837.
[4] Adimurthi, Mishra, S., Gowda, G. D. V., Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes, Netw. Heterog. Media 2 (1) (2007), 127–157.
[5] Andreianov, B., The semigroup approach to conservation laws with discontinuous flux, in: Hyperbolic conservation laws and related analysis with applications, Springer Proc. Math. Stat. 49, Springer, Heidelberg, 2014, 1–22.
[6] Andreianov, B., New approaches to describing admissibility of solutions of scalar conservation laws with discontinuous flux, in: CANUM 2014 – 42e Congres National d’Analyse Numerique, ESAIM Proc. Surveys 50 EDP Sci., Les Ulis, 2015, 40–65.
[7] Andreianov, B., Cances, C., Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium, Comput. Geosci. 17 (3) (2013), 551–572.
[8] Andreianov, B., Cances, C., On interface transmission conditions for conservation laws with discontinuous flux of general shape, J. Hyperbolic Differ. Equ. 12 (2) (2015), 343–384.
[9] Andreianov, B., Donadello, C., Rosini, M. D., A second-order model for vehicular traffics with local point constraints on the flow, Math. Models Methods Appl. Sci. 26 (4) (2016), 751–802.
[10] Andreianov, B., Karlsen, K. H., Risebro, N. H., A theory of \(L^1\)-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal. 201 (1) (2011), 27–86.
[11] Andreianov, B., Mitrovic, D., Entropy conditions for scalar conservation laws with discontinuous flux revisited, Ann. Inst. H. Poincare Anal. Non Lineaire 32 (6) (2015), 1307–1335.
[12] Andreianov, B., Rosini, M. D., Microscopic selection of solutions to scalar conservation laws with discontinuous flux in the context of vehicular traffic, submitted, 2019.
[13] Aw, A., Rascle, M., Resurrection of “second order” models of traffic flow, SIAM J. Appl. Math. 60 (3) (2000), 916–938.
[14] Burger, R., Karlsen, K., Risebro, N., Towers., J., Monotone difference approximations for the simulation of clarifier-thickener units, Computing and Visualization in Science 6 (2) (2004), 83–91.
[15] Burger, R., Karlsen, K. H., Towers, J. D., An Engquist–Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections, SIAM J. Numer. Anal. 47 (3) (2009), 1684–1712.
[16] Burger, R., Karlsen, K. H., Towers, J. D., On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux, Netw. Heterog. Media 5 (3) (2010), 461–485.
[17] Cances, C., Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution. SIAM J. Math. Anal. 42 (2) (2010), 946–971.
[18] Colombo, R. M., Goatin, P., A well posed conservation law with a variable unilateral constraint, J. Differential Equations 234 (2) (2007), 654–675.
[19] Di Francesco, M., Fagioli, S., Rosini, M. D., Many particle approximation of the Aw–Rascle–Zhang second order model for vehicular traffic, Math. Biosci. Eng. 14 (1) (2017), 127–141.
[20] Diehl, S., Continuous sedimentation of multi-component particles, Math. Methods Appl. Sci. 20 (15) (1997), 1345–1364.
[21] Diehl, S., A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients, J. Hyperbolic Differ. Equ. 6 (1) (2009), 127–159.
[22] Garavello, M., Natalini, R., Piccoli, B., Terracina, A., Conservation laws with discontinuous flux, Netw. Heterog. Media 2 (1) (2007), 159–179.
[23] Ghoshal, S. S., Optimal results on TV bounds for scalar conservation laws with discontinuous flux, J. Differential Equations 258 (3) (2015), 980–1014.
[24] Gimse, T., Risebro, N. H., Solution of the Cauchy problem for a conservation law with a discontinuous flux function, SIAM J. Math. Anal. 23 (3) (1992), 635–648.
[25] Hopf, E., The partial differential equation \(u_t+uu_x = \mu u_{xx}\), Comm. Pure Appl. Math. 3 (1950), 201–230.
[26] Kaasschieter, E. F., Solving the Buckley–Leverett equation with gravity in a heterogeneous porous medium, Comput. Geosci. 3 (1) (1999), 23–48.
[27] Karlsen, K. H., Risebro, N. H., Towers, J. D., \(L^1\) stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients, Skr. K. Nor. Vidensk. Selsk. 3 (2003), 49 pp.
[28] Kruzhkov, S. N., First order quasilinear equations with several independent variables, Mat. Sb. (N. S.) 81 (123) (1970), 228–255.
[29] Lighthill, M., Whitham, G., On kinematic waves II. A theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 229 (1955), 317–345.
[30] Rayleigh, L., Aerial plane waves of finite amplitude [Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 84 (1910), 247–284], in: Classic Papers in Shock Compression Science, High-press, Shock Compression Condens. Matter, Springer, New York, 1998, 361–404.
[31] Richards, P. I., Shock waves on the highway, Operations Research 4 (1) (1956), 42–51.
[32] Seguin, N., Vovelle, J., Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients, Math. Models Methods Appl. Sci. 13 (2) (2003), 221–257.
[33] Shen, W., Traveling wave profiles for a follow-the-leader model for traffic flow with rough road condition, Netw. Heterog. Media 13 (3) (2018), 449–478.
[34] Shen, W., Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads, Netw. Heterog. Media 14 (4) (2019), 709–732.
[35] Towers, J. D., Convergence of a difference scheme for conservation laws with a discontinuous flux, SIAM J. Numer. Anal. 38 (2) (2000), 681–698.
[36] \Zhang, H., A non-equilibrium traffic model devoid of gas-like behavior, Transportation Research Part B: Methodological 36 (3) (2002), 275–290.