Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a7, author = {Bracci, Filippo}, title = {Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/} }
TY - JOUR AU - Bracci, Filippo TI - Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/ LA - en ID - AUM_2019_73_2_a7 ER -
%0 Journal Article %A Bracci, Filippo %T Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2019 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/ %G en %F AUM_2019_73_2_a7
Bracci, Filippo. Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/
[1] Abate, M., Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, 1989.
[2] Aharonov, D., Elin, M., Reich, S., Shoikhet, D., Parametric representation of semicomplete vector fields on the unit balls of Cn and in Hilbert space, Atti Accad. Naz. Lincei 10 (1999), 229–253.
[3] Arosio, L., Bracci, F., Canonical models for holomorphic iteration, Trans. Amer. Math. Soc. 368 (5) (2016), 3305–3339.
[4] Berkson, E., Porta, H., Semigroups of holomorphic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.
[5] Betsakos, D., On the rate of convergence of parabolic semigroups of holomorphic functions, Anal. Math. Phys. 5 (2015), 207–216.
[6] Betsakos, D., Contreras, M. D., Diaz-Madrigal, S., On the rate of convergence of semigroups of holomorphic functions at the Denjoy–Wolff point, to appear in Rev. Mat. Iberoamericana.
[7] Bracci, F., Gumenyuk, P., Contact points and fractional singularities for semigroups of holomorphic self-maps in the unit disc, J. Anal. Math. 130 (1) (2016), 185–217.
[8] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Topological invariants for semigroups of holomorphic self-maps of the unit disc, J. Math. Pures Appl. 107 (1) (2017), 78–99.
[9] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., On the Koenigs function of semigroups of holomorphic self-maps of the unit disc, Anal. Math. Phys. 8 (4) (2018), 521–540.
[10] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Gaussier, H., Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc,. Ann. Math. Pura Appl. 198 (2) (2019), 411–441.
[11] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Gaussier, H., Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc, Trans. Amer. Math. Soc. 373 (2) (2020), 939–969.
[12] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Gaussier, H., Zimmer, A., Asymptotic behavior of orbits of holomorphic semigroups, J. Math. Pures Appl. doi:10.1016/j.matpur.2019.05.005 online print.
[13] Collingwood, E. F., Lohwater, A. J., The theory of Cluster Sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56 Cambridge Univ. Press, Cambridge, 1966.
[14] Contreras, M. D., Diaz-Madrigal, S., Analytic flows on the unit disk: angular derivatives and boundary fixed points, Pacific J. Math., 222 (2005), 253–286.
[15] Contreras, M. D., Diaz-Madrigal, S., Pommerenke, Ch., Fixed points and boundary behavior of the Koenigs function, Ann. Acad. Sci. Fenn. Math. 29 (2004), 471–488.
[16] Contreras, M. D., Diaz-Madrigal, S., Pommerenke, Ch., On boundary critical points for semigroups of analytic functions, Math. Scand. 98 (2006), 125–142.
[17] Cowen, C. C., Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69–95.
[18] Elin, M., Jacobzon, F., Parabolic type semigroups: asymptotics and order of contact, Anal. Math. Phys. 4 (2014), 157–185.
[19] Jacobzon, F., Reich, S., Shoikhet, D., Linear fractional mappings, invariant sets, semigroups and commutativity, J. Fixed Point Theory Appl. 5 (2009), 63–91.
[20] Jacobzon, F., Levenshtein, M., Reich, S., Convergence characteristics of oneparameter continuous semigroups, Anal. Math. Phys. 1 (2011), 311–335.
[21] Elin, M., Khavinson, D., Reich, S., Shoikhet, D., Linearization models for parabolic dynamical systems via Abel’s functional equation, Ann. Acad. Sci. Fen. Math. 35 (2010), 439–472.
[22] Elin, M., Levenshtein, M., Reich, S., Shoikhet, D., Commuting semigroups of holomorphic mappings, Math. Scand. 103 (2008), 295–319.
[23] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory, Birkhauser, Basel, 2010.
[24] Elin, M., Reich, S., Shoikhet, D., Yacobzon, F., Rates of convergence of oneparameter semigroups with boundary Denjoy–Wolff fixed points, in: Fixed Points Theory and its Applications, Yokohama Publishers, Yokohama, 2008, 43–58.
[25] Elin, M., Shoikhet, D., Zalcman, L., A flower structure of backward flow invariant domains for semigroups, Ann. Acad. Sci. Fenn. Math. 33 (2008), 3–34.
[26] Shoikhet, D., Semigroups in Geometrical Function Theory, Kluwer Academic Publishers, Dordrecht, 2001.
[27] Siskakis, A. G., Semigroups of Composition Operators and the Ces`aro Operator on Hp(D), Ph. D. Thesis, University of Illinois, 1985.
[28] Siskakis, A. G., Semigroups of composition operators on spaces of analytic functions, a review, Contemp. Math. 213, Amer. Math. Soc., Providence, RI, 1998, 229–252.