Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We introduce three quantities related to orbits of non-elliptic continuous semigroups of holomorphic self-maps of the unit disk, the total speed, the orthogonal speed, and the tangential speed and show how they are related and what can be inferred from those.
Keywords: Semigroups of holomorphic functions, hyperbolic geometry, dynamical systems
@article{AUM_2019_73_2_a7,
     author = {Bracci, Filippo},
     title = {Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/}
}
TY  - JOUR
AU  - Bracci, Filippo
TI  - Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/
LA  - en
ID  - AUM_2019_73_2_a7
ER  - 
%0 Journal Article
%A Bracci, Filippo
%T Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/
%G en
%F AUM_2019_73_2_a7
Bracci, Filippo. Speeds of convergence of orbits of non-elliptic semigroups of holomorphic self-maps of the unit disk. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a7/

[1] Abate, M., Iteration Theory of Holomorphic Maps on Taut Manifolds, Mediterranean Press, Rende, 1989.

[2] Aharonov, D., Elin, M., Reich, S., Shoikhet, D., Parametric representation of semicomplete vector fields on the unit balls of Cn and in Hilbert space, Atti Accad. Naz. Lincei 10 (1999), 229–253.

[3] Arosio, L., Bracci, F., Canonical models for holomorphic iteration, Trans. Amer. Math. Soc. 368 (5) (2016), 3305–3339.

[4] Berkson, E., Porta, H., Semigroups of holomorphic functions and composition operators, Michigan Math. J. 25 (1978), 101–115.

[5] Betsakos, D., On the rate of convergence of parabolic semigroups of holomorphic functions, Anal. Math. Phys. 5 (2015), 207–216.

[6] Betsakos, D., Contreras, M. D., Diaz-Madrigal, S., On the rate of convergence of semigroups of holomorphic functions at the Denjoy–Wolff point, to appear in Rev. Mat. Iberoamericana.

[7] Bracci, F., Gumenyuk, P., Contact points and fractional singularities for semigroups of holomorphic self-maps in the unit disc, J. Anal. Math. 130 (1) (2016), 185–217.

[8] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Topological invariants for semigroups of holomorphic self-maps of the unit disc, J. Math. Pures Appl. 107 (1) (2017), 78–99.

[9] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., On the Koenigs function of semigroups of holomorphic self-maps of the unit disc, Anal. Math. Phys. 8 (4) (2018), 521–540.

[10] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Gaussier, H., Backward orbits and petals of semigroups of holomorphic self-maps of the unit disc,. Ann. Math. Pura Appl. 198 (2) (2019), 411–441.

[11] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Gaussier, H., Non-tangential limits and the slope of trajectories of holomorphic semigroups of the unit disc, Trans. Amer. Math. Soc. 373 (2) (2020), 939–969.

[12] Bracci, F., Contreras, M. D., Diaz-Madrigal, S., Gaussier, H., Zimmer, A., Asymptotic behavior of orbits of holomorphic semigroups, J. Math. Pures Appl. doi:10.1016/j.matpur.2019.05.005 online print.

[13] Collingwood, E. F., Lohwater, A. J., The theory of Cluster Sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56 Cambridge Univ. Press, Cambridge, 1966.

[14] Contreras, M. D., Diaz-Madrigal, S., Analytic flows on the unit disk: angular derivatives and boundary fixed points, Pacific J. Math., 222 (2005), 253–286.

[15] Contreras, M. D., Diaz-Madrigal, S., Pommerenke, Ch., Fixed points and boundary behavior of the Koenigs function, Ann. Acad. Sci. Fenn. Math. 29 (2004), 471–488.

[16] Contreras, M. D., Diaz-Madrigal, S., Pommerenke, Ch., On boundary critical points for semigroups of analytic functions, Math. Scand. 98 (2006), 125–142.

[17] Cowen, C. C., Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), 69–95.

[18] Elin, M., Jacobzon, F., Parabolic type semigroups: asymptotics and order of contact, Anal. Math. Phys. 4 (2014), 157–185.

[19] Jacobzon, F., Reich, S., Shoikhet, D., Linear fractional mappings, invariant sets, semigroups and commutativity, J. Fixed Point Theory Appl. 5 (2009), 63–91.

[20] Jacobzon, F., Levenshtein, M., Reich, S., Convergence characteristics of oneparameter continuous semigroups, Anal. Math. Phys. 1 (2011), 311–335.

[21] Elin, M., Khavinson, D., Reich, S., Shoikhet, D., Linearization models for parabolic dynamical systems via Abel’s functional equation, Ann. Acad. Sci. Fen. Math. 35 (2010), 439–472.

[22] Elin, M., Levenshtein, M., Reich, S., Shoikhet, D., Commuting semigroups of holomorphic mappings, Math. Scand. 103 (2008), 295–319.

[23] Elin, M., Shoikhet, D., Linearization Models for Complex Dynamical Systems. Topics in Univalent Functions, Functional Equations and Semigroup Theory, Birkhauser, Basel, 2010.

[24] Elin, M., Reich, S., Shoikhet, D., Yacobzon, F., Rates of convergence of oneparameter semigroups with boundary Denjoy–Wolff fixed points, in: Fixed Points Theory and its Applications, Yokohama Publishers, Yokohama, 2008, 43–58.

[25] Elin, M., Shoikhet, D., Zalcman, L., A flower structure of backward flow invariant domains for semigroups, Ann. Acad. Sci. Fenn. Math. 33 (2008), 3–34.

[26] Shoikhet, D., Semigroups in Geometrical Function Theory, Kluwer Academic Publishers, Dordrecht, 2001.

[27] Siskakis, A. G., Semigroups of Composition Operators and the Ces`aro Operator on Hp(D), Ph. D. Thesis, University of Illinois, 1985.

[28] Siskakis, A. G., Semigroups of composition operators on spaces of analytic functions, a review, Contemp. Math. 213, Amer. Math. Soc., Providence, RI, 1998, 229–252.