Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a5, author = {Korduba, Yaryna and Holovatch, Yurij and de Regt, Robin}, title = {Physicist{\textquoteright}s approach to public transportation networks: between data processing and statistical physics}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a5/} }
TY - JOUR AU - Korduba, Yaryna AU - Holovatch, Yurij AU - de Regt, Robin TI - Physicist’s approach to public transportation networks: between data processing and statistical physics JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a5/ LA - en ID - AUM_2019_73_2_a5 ER -
%0 Journal Article %A Korduba, Yaryna %A Holovatch, Yurij %A de Regt, Robin %T Physicist’s approach to public transportation networks: between data processing and statistical physics %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2019 %V 73 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a5/ %G en %F AUM_2019_73_2_a5
Korduba, Yaryna; Holovatch, Yurij; de Regt, Robin. Physicist’s approach to public transportation networks: between data processing and statistical physics. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a5/
[1] Albert, R., Barabasi, A.-L., Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002), 47–97.
[2] Alessandretti, L., Karsai, M., Gauvin, L., User-based representation of time-resolved multimodal public transportation networks, Open Science 3 (2016), 160156.
[3] Anderson, P. W., More is different, Science 177 (1972), 393–396.
[4] Barabasi, A.-L., Albert, R., Emergence of scaling in random networks, Science 286 (1999), 509–512.
[5] Barabasi, A.-L., Albert, R., Jeong, H., Mean-field theory for scale-free random networks, Physica A 272 (1999), 173–187.
[6] Barthelemy, M., Spatial networks, Physics Reports 499 (1) (2011), 1–101.
[7] Benguigui, L., The fractal dimension of some railway networks, Journal de Physique 2 (1992), 385–388.
[8] Benguigui, L., Daoud, M., Is the suburban railway system a fractal?, Geographical Analysis 23 (1991), 362–368.
[9] Benguigui, L., A fractal analysis of the public transportation system of Paris, Environment and Planning A 27 (1995), 1147–1161.
[10] Benguigui, L., The fractal dimension of some railway networks, Journal de Physique I 2 (1992), 385–388.
[11] Berche, B., von Ferber, C., Holovatch, T., Network harness: bundles of routes in public transport networks, AIP Conference Proceedings, vol. 1198, AIP, 2009, 3–12.
[12] Berche, B., von Ferber, C., Holovatch, T., Holovatch, Yu., Resilience of public transport networks against attacks, The European Physical Journal B 71 (1) (2009), 125–137.
[13] Berche, B., von Ferber, C., Holovatch, T., Holovatch, Yu., Transportation network stability: a case study of city transit, Advances in Complex Systems 15 (supp01) (2012), 1250063.
[14] Bollobas, B., Random Graphs, 2 ed., Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2001.
[15] Chang, H., Su, B., Zhou, Y., He, D., Assortativity and act degree distribution of some collaboration networks, Physica A: Statistical Mechanics and its Applications 383 (2007), 687–702.
[16] Corominas-Murtra, B., Hanel, R., Thurner, S., Understanding scaling through historydependent processes with collapsing sample space, Proc. Nat. Acad. Sci. USA 112 (2015), 5348–5353.
[17] Daletskii, A., Kondratiev, Yu., Kozitsky, Yu., Pasurek, T., A phase transition in a quenched amorphous ferromagnet, Journal of Statistical Physics 156 (2014), 156–176.
[18] de Regt, R., Complex Networks: Topology, Shape and Spatial Embedding, Doctoral Thesis, Coventry University, Coventry, UK, 2017.
[19] de Regt, R., von Ferber, C., Holovatch, Yu., Lebovka, M., Public transportation in Great Britain viewed as a complex network, Transportmetrica A: Transport Science 15 (2) (2019), 722–748.
[20] Dorogovtsev, S. N., Mendes, J. F. F., Evolution of Networks, Oxford University Press, Oxford, 2003.
[21] Essam, J. W., Percolation theory, Reports on Progress in Physics 43 (7) (1980), 833–912.
[22] Ester, M., Kriegel, H.-P., Sander, J., Xu, X., A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise, in: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, KDD’96, AAAI Press, 1996, 226–231.
[23] Feder, J., Evolution of Networks, Springer US, 1988.
[24] von Ferber, C., Holovatch, Yu., Fractal transit networks: self-avoiding walks and Levy flights, The European Physical Journal ST 216 (2013), 49–55.
[25] von Ferber, C., Berche, B., Holovatch, T., Holovatch, Y., A tale of two cities, Journal of Transportation Security 5 (2012), 199–216.
[26] von Ferber, C., Holovatch, T., Holovatch, Yu., Palchykov, V., Public transport networks: empirical analysis and modeling, The European Physical Journal B 68 (2) (2009), 261–275.
[27] von Ferber, C., Holovatch, T., Holovatch, Yu., Palchykov, V., Network harness: Metropolis public transport, Physica A: Statistical Mechanics and its Applications 380 (2007), 585–591.
[28] von Ferber, C., Holovatch, T., Holovatch, Yu., Attack vulnerability of public transport networks, in: Traffic and Granular Flow07, Springer, 2009, 721–731.
[29] von Ferber, C., Holovatch, T., Holovatch, Yu., Palchykov, V., Modeling metropolis public transport, in: Traffic and Granular Flow07, Springer, 2009, 709–719.
[30] Frankhauser, P., Aspects fractals des structures urbaines, L’Espace Geographique 19 (1990), 45–69.
[31] Gallotti, R., Barthelemy, M., The multilayer temporal network of public transport in Great Britain, Scientific Data 2 (2015), 140056.
[32] Ghosh, S., Banerjee, A., Sharma, N., Agarwal, S., Mukherjee, A., Ganguly, N., Structure and evolution of the Indian railway network, in: Summer Solstice International Conference on Discrete Models of Complex Systems (SOLSTICE), 2010.
[33] Goldenfeld, N., Kadanoff, L. P., Simple lessons from complexity, Science 284 (1999), 87–89.
[34] Guida, M., Maria, F., Topology of the Italian airport network: A scale-free small-world network with a fractal structure?, Chaos, Solitons Fractals 31 (2007), 527–536.
[35] Guimera, R., Nunes Amaral, L. A., Modeling the world-wide airport network, The European Physical Journal B-Condensed Matter and Complex Systems 38 (2004), 381–385.
[36] Guimera, R., Mossa, S., Turtschi, A., Nunes Amaral, L., The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles, Proc. Nat. Acad. Sci. USA 102 (2005), 7794–7799.
[37] Guo, L., Zhu, Y., Luo, Z., Li, W., The scaling of several public transport networks in China, Fractals 21 (2013), 1350010.
[38] Holovatch, T., Complex Transportation Networks: Resilience, Modelling and Optimization, Doctoral Thesis, Universite Henri Poincare – Nancy 1 and Coventry University, 2011.
[39] Holovatch, Yu., von Ferber, C., Olemskoi, A., Holovatch, T., Mryglod, O., Olemskoi, I., Palchykov, V., Complex networks, Journ. Phys. Stud. 10 (2006), 247–291 (Ukrainian).
[40] Holovatch, Yu., (ed.), Order, Disorder and Criticality. Advanced Problems of Phase Transition Theory, Vol. I–V, World Scientific, Singapore, 2004–2018.
[41] Holovatch, Yu., Kenna, R., Thurner, S., Complex systems: physics beyond physics, European Journal of Physics 314 (2017), 023002.
[42] Kadanoff, L. P., Scaling laws for Ising models near tc, Physics Physique Fizika 2 (1966), 263–272.
[43] Kim, K. S., Kwan, S. K., Benguigui, L., Marinov, M., The fractal structure of Seoul’s public transportation system, Cities 20 (2003), 31–39.
[44] Korduba, Ya., Public transport networks: Topological features and stability analysis, Bachelor Thesis, Ukrainian Catholic University, Lviv, 2019.
[45] Kozitsky, Yu., Mathematical theory of the Ising model and its generalizations: an introduction, in: Order, Disorder and Criticality. Advanced Problems of Phase Transition Theory (Yu. Holovatch, ed.), World Scientific, 2004, 1–66.
[46] Kozitsky, Yu., Pilorz, K., Random jumps and coalescence in the continuum: evolution of states of an infinite system, preprint arXiv:1807.07310 [math.DS] (2018).
[47] Kozitsky, Yu. V., Hierarchical model of a vector ferromagnet – self-similar block-spin distributions and the Lee-Yang theorem, Reports on Mathematical Physics 26 (3) (1988), 429–445.
[48] Ladyman, J., Lambert, J., Wiesner, K., What is a complex system?, Eur. Journ. Philos. Sci. 3 (2013), 33–67.
[49] Latora, V., Marchiori, M., Is the Boston subway a small-world network?, Physica A: Statistical Mechanics and its Applications 314 (1–4) (2002), 109–113.
[50] Mandelbrot, B., An informational theory of the statistical structure of languages, in: Communication Theory (Woburn, MA) (W. Jackson, ed.), Butterworth, 1953, 486–502.
[51] Mitzenmacher, M., A brief history of generative models for power law and lognormal distributions, Internet Mathematics 1 (2004), 226–251.
[52] Molloy, M., Reed, B., A critical point for random graphs with a given degree sequence, Random Structures Algorithms 6 (2–3) (1995), 161–180.
[53] Newman, M., Barabasi, A.-L., Watts, D. J., The Structure and Dynamics of Networks, Princeton University Press, Princeton, New Jersey, 2006.
[54] Newman, M. E. J., Power laws, Pareto distributions and Zipf’s law, Contemporary Physics 46 (2005), 323–351.
[55] Nienhuis, B., Exact critical point and critical exponents of O(n) models in two dimensions, Phys. Rev. Lett. 49 (1982), 1062–1065.
[56] Parisi, G., Complex systems: a physicist’s viewpoint, Physica A 263 (1999), 557–564.
[57] Russo, G., Nicosia, V., Latora, V., Complex Networks: Principles, Methods and Applications, Cambridge university press, Cambridge, 2017.
[58] Schneider, C. M., Moreira, A. A., Andrade, J. S., Havlin, S., and Hans J Herrmann, Mitigation of malicious attacks on networks, Proceedings of the National Academy of Sciences 108 (10) (2011), 3838–3841.
[59] Seaton, K., Hackett, L., Stations, trains and small-world networks, Physica A 339 (2004), 635–644.
[60] Sen, P., Dasgupta, S., Chatterjee, A., Sreeram, P., Mukherjee, G., Manna, S., Smallworld properties of the Indian railway network, Physical Review E 67 (3) (2003), 036106.
[61] Sengupta, A. (ed.), Chaos, Nonlinearity, Complexity: The Dynamical Paradigm of Nature, Sringer, 2006.
[62] Shanmukhappa, T., Ho, I. W. H., Tse, C. K., Bus transport network in Hong Kong: Scale-free or not?, in: 2016 International Symposium on Nonlinear Theory and Its Applications, NOLTA2016, Yugawara, Japan, November 27th–30th, 2016, 610–614.
[63] Sherrington, D., Physics and complexity, Phil. Trans. Roy. Soc. A 368 (2010), 1175–1189.
[64] Sienkiewicz, J., Hołyst, J., Statistical analysis of 22 public transport networks in Poland, Physical Review E 72 (2005), 46127.
[65] Simkin, M. V., Roychowdhury, V. P., Re-inventing Willis, Physics Reports 502 (2011), 1–35.
[66] Simon, H. A., On a class of skew distribution functions, Biometrika 42 (1955), 425–440.
[67] Soh, H., Lim, S., Zhang, T., Fu, X., Lee, G., Hung, T., Di, P., Prakasam, S., Wong, L., Weighted complex network analysis of travel routes on the Singapore public transportation system, Physica A: Statistical Mechanics and its Applications 389 (2010), 5852–5863.
[68] Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, 1971.
[69] Stauffer, D., Aharony, A., Introduction to Percolation Theory, Taylor Francis, London, 1991.
[70] Sui, Y., Shao, F., Sun, R., Li, S., Space evolution model and empirical analysis of an urban public transport network, Physica A: Statistical Mechanics and its Applications 391 (2012), 3708–3717.
[71] Thibault, S., Marchand, A., (eds.), Reseaux et Topologie, Institut National des Sciences Appliquees de Lyon, Villeurbanne, 1987.
[72] Thurner, S., Hanel, R., Klimek, P., Introduction to the Theory of Complex Systems, Oxford University Press, 2018.
[73] Thurner, S., (ed.), Visions for Complexity, World Scientific, Singapore, 2016.
[74] Xu, X., Hu, J., Liu, F., Liu, L., Scaling and correlations in three bus-transport networks of China, Physica A: Statistical Mechanics and its Applications 374 (2007), 441–448.
[75] Yang, X. H., Chen, G., Sun, B., Chen, S. Y., Wang, W. L., Bus transport network model with ideal n-depth clique network topology, Physica A: Statistical Mechanics and its Applications 390 (2011), 4660–4672.