Approximations of self-adjoint \(C_0\)-semigroups in the operator-norm topology
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2.

Voir la notice de l'article provenant de la source Library of Science

The paper improves approximation theory based on the Trotter–Kato product formulae. For self-adjoint C_0-semigroups we develop a lifting of the strongly convergent Chernoff approximation (or product) formula to convergence in the operator-norm topology. This allows to obtain optimal estimate for the rate of operator-norm convergence of Trotter–Kato product formulae for Kato functions from the class K_2.
Keywords: Strongly continuous semigroup, Chernoff approximation formula, Trotter–Kato product formulae
@article{AUM_2019_73_2_a3,
     author = {Zagrebnov, Valentin},
     title = {Approximations of self-adjoint {\(C_0\)-semigroups} in the operator-norm topology},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/}
}
TY  - JOUR
AU  - Zagrebnov, Valentin
TI  - Approximations of self-adjoint \(C_0\)-semigroups in the operator-norm topology
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/
LA  - en
ID  - AUM_2019_73_2_a3
ER  - 
%0 Journal Article
%A Zagrebnov, Valentin
%T Approximations of self-adjoint \(C_0\)-semigroups in the operator-norm topology
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/
%G en
%F AUM_2019_73_2_a3
Zagrebnov, Valentin. Approximations of self-adjoint \(C_0\)-semigroups in the operator-norm topology. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/

[1] Bobrowski, A., Convergence of One-parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, New Mathematical Monographs 30, Cambridge University Press, Cambridge, 2016.

[2] Butko, Ya. A., The method of Chernoff approximation, To appear in: Semigroups of Operators: Theory and Applications SOTA-2018, Springer Proceedings in Mathematics, 2020.

[3] Cachia, V., Zagrebnov, V. A., Operator-norm convergence of the Trotter product formula for holomorphic semigroups, J. Oper. Theory 46 (2001), 199–213.

[4] Cachia, V., Zagrebnov, V. A., Operator-norm approximation of semigroups by quasisectorial contractions, J. Funct. Anal. 180 (2001), 176–194.

[5] Chernoff, P. R., Note on product formulas for operator semigroups, J. Funct. Anal. 2 (1968), 238–242.

[6] Ichinose, T., Tamura, H., The norm convergence of the Trotter–Kato product formula with error bound, Commun. Math. Phys. 217 (2001), 489–502.

[7] Ichinose, T., Tamura, Hideo, Tamura, Hiroshi, Zagrebnov, V. A., Note on the paper “The norm convergence of the Trotter–Kato product formula with error bound” by Ichinose and Tamura, Commun. Math. Phys. 221 (2001), 499–510.

[8] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980, Corrected Printing of the Second Edition.

[9] Neidhardt, H., Zagrebnov, V. A., Trotter–Kato product formula and symmetrically normed ideals, J. Funct. Anal. 167 (1999), 113–167.

[10] Zagrebnov, V. A., Quasi-sectorial contractions, J. Funct. Anal. 254 (2008), 2503–2511.

[11] Zagrebnov, V. A., Comments on the Chernoff \(\sqrt{n}\)-lemma, in: Functional Analysis and Operator Theory for Quantum Physics (The Pavel Exner Anniversary Volume), European Mathematical Society, Z¨urich, 2017, 565–573.

[12] Zagrebnov, V. A., Gibbs Semigroups, Operator Theory Series: Advances and Applications 273, Bikhauser-Springer, Basel 2019.