Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a3, author = {Zagrebnov, Valentin}, title = {Approximations of self-adjoint {\(C_0\)-semigroups} in the operator-norm topology}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/} }
TY - JOUR AU - Zagrebnov, Valentin TI - Approximations of self-adjoint \(C_0\)-semigroups in the operator-norm topology JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/ LA - en ID - AUM_2019_73_2_a3 ER -
Zagrebnov, Valentin. Approximations of self-adjoint \(C_0\)-semigroups in the operator-norm topology. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a3/
[1] Bobrowski, A., Convergence of One-parameter Operator Semigroups. In Models of Mathematical Biology and Elsewhere, New Mathematical Monographs 30, Cambridge University Press, Cambridge, 2016.
[2] Butko, Ya. A., The method of Chernoff approximation, To appear in: Semigroups of Operators: Theory and Applications SOTA-2018, Springer Proceedings in Mathematics, 2020.
[3] Cachia, V., Zagrebnov, V. A., Operator-norm convergence of the Trotter product formula for holomorphic semigroups, J. Oper. Theory 46 (2001), 199–213.
[4] Cachia, V., Zagrebnov, V. A., Operator-norm approximation of semigroups by quasisectorial contractions, J. Funct. Anal. 180 (2001), 176–194.
[5] Chernoff, P. R., Note on product formulas for operator semigroups, J. Funct. Anal. 2 (1968), 238–242.
[6] Ichinose, T., Tamura, H., The norm convergence of the Trotter–Kato product formula with error bound, Commun. Math. Phys. 217 (2001), 489–502.
[7] Ichinose, T., Tamura, Hideo, Tamura, Hiroshi, Zagrebnov, V. A., Note on the paper “The norm convergence of the Trotter–Kato product formula with error bound” by Ichinose and Tamura, Commun. Math. Phys. 221 (2001), 499–510.
[8] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980, Corrected Printing of the Second Edition.
[9] Neidhardt, H., Zagrebnov, V. A., Trotter–Kato product formula and symmetrically normed ideals, J. Funct. Anal. 167 (1999), 113–167.
[10] Zagrebnov, V. A., Quasi-sectorial contractions, J. Funct. Anal. 254 (2008), 2503–2511.
[11] Zagrebnov, V. A., Comments on the Chernoff \(\sqrt{n}\)-lemma, in: Functional Analysis and Operator Theory for Quantum Physics (The Pavel Exner Anniversary Volume), European Mathematical Society, Z¨urich, 2017, 565–573.
[12] Zagrebnov, V. A., Gibbs Semigroups, Operator Theory Series: Advances and Applications 273, Bikhauser-Springer, Basel 2019.