Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_2_a0, author = {Banasiak, Jacek}, title = {Logarithmic norms and regular perturbations of differential equations}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {5--19}, publisher = {mathdoc}, volume = {73}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a0/} }
TY - JOUR AU - Banasiak, Jacek TI - Logarithmic norms and regular perturbations of differential equations JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 SP - 5 EP - 19 VL - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a0/ LA - en ID - AUM_2019_73_2_a0 ER -
Banasiak, Jacek. Logarithmic norms and regular perturbations of differential equations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 2, pp. 5-19. http://geodesic.mathdoc.fr/item/AUM_2019_73_2_a0/
[1] Carr, J., Applications of Centre Manifold Theory, Applied Mathematical Sciences 35, Springer-Verlag, New York–Berlin, 1981.
[2] Coppel, W. A., Stability and Asymptotic Behavior of Differential Equations, D. C. Heath and Co., Boston, Mass., 1965.
[3] Dahlquist, G., Stability and error bounds in the numerical integration of ordinary differential equations, Kungl. Tekn. H¨ogsk. Handl. Stockholm. No. 130 (1959), 87pp.
[4] Engel, K.-J., Nagel, R., One-parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics 194, Springer-Verlag, New York, 2000.
[5] Hairer, E., Nørsett, S. P., Wanner, G., Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer Series in Computational Mathematics 8, Springer-Verlag, Berlin, second edition, 1993.
[6] Lozinskii, S. M., Error estimate for numerical integration of ordinary differential equations. I, Izv. Vysˇs. Uˇcebn. Zaved. Matematika 5 (6) (1958), 52–90 (Russian); 5 (12) (1959), 222 (Erratum).
[7] Marciniak-Czochra, A., Mikelic, A., Stiehl, T., Renormalization group second-order approximation for singularly perturbed nonlinear ordinary differential equations, Math. Methods Appl. Sci. 41 (14) (2018), 5691–5710.
[8] Ortega, J. M., Numerical Analysis, Classics in Applied Mathematics 3, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second edition, 1990.
[9] Pao, C. V., A further remark on the logarithmic derivatives of a square matrix, Linear Algebra and Appl. 7 (1973), 275–278.
[10] Pao, C. V., Logarithmic derivates of a square matrix, Linear Algebra and Appl. 6 (1973), 159–164.
[11] Sallet, G., Mathematical Epidemiology, Lecture Notes, 2018. http://www.iecl.univ-lorraine.fr/Gauthier.Sallet/Lecture-Notes-Pretoria-2018.pdf
[12] Smith, H. L., Waltman, P., The Theory of the Chemostat, Cambridge Studies in Mathematical Biology 13, Cambridge University Press, Cambridge, 1995.
[13] Soderlind, G., The logarithmic norm. History and modern theory, BIT 46 (3) (2006), 631–652.
[14] Strom, T., On logarithmic norms, SIAM J. Numer. Anal. 12 (5) (1975), 741–753.
[15] Uherka, D. J., Sergott, A. M., On the continuous dependence of the roots of a polynomial on its coefficients, Amer. Math. Monthly 84 (5) (1977), 368–370.
[16] Vladimirov, V. S., Equations of Mathematical Physics, Pure and Applied Mathematics 3, Marcel Dekker, Inc., New York, 1971.
[17] Walter, W., Ordinary Differential Equations, Graduate Texts in Mathematics 182, Springer-Verlag, New York, 1998.