Some properties of the class \(\mathcal{U}\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper we study the class 𝒰 of functions that are analytic in the open unit disk D ={z : |z| 1}, normalized such thatf(0) = f'(0)-1 = 0 and satisfy |[z/f(z)]^2f'(z) - 1| 1   (z∈ D). For functions in the class 𝒰 we give sharp estimates of the second and the third Hankel determinant, its relationship with the class of α-convex functions, as well as certain starlike properties.
Keywords: Analytic, class \(\mathcal{U}\), starlike, \(\alpha\)-convex, Hankel determinant
@article{AUM_2019_73_1_a6,
     author = {Obradovic, Milutin and Tuneski, Nikola},
     title = {Some properties of the class {\(\mathcal{U}\)}},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a6/}
}
TY  - JOUR
AU  - Obradovic, Milutin
AU  - Tuneski, Nikola
TI  - Some properties of the class \(\mathcal{U}\)
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a6/
LA  - en
ID  - AUM_2019_73_1_a6
ER  - 
%0 Journal Article
%A Obradovic, Milutin
%A Tuneski, Nikola
%T Some properties of the class \(\mathcal{U}\)
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a6/
%G en
%F AUM_2019_73_1_a6
Obradovic, Milutin; Tuneski, Nikola. Some properties of the class \(\mathcal{U}\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a6/

[1] Goodman, A. W., Univalent Functions. Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.

[2] Jack, I. S., Functions starlike and convex of order \(\alpha\), J. London Math. Soc. 3 (2) (1971), 469–474.

[3] Mocanu, P. T., Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11 (34) (1969), 127–133.

[4] Miller, S. S., Mocanu, P., Reade, M. O., All \(\alpha\)-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554.

[5] Obradovic, M., Pascu, N. N., Radomir, I., A class of univalent functions, Math. Japon. 44 (3) (1996), 565–568.

[6] Obradovic, M., Ponnusamy, S., New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl. 44 (3) (2001), 173–191.

[7] Obradovic, M., Ponnusamy, S., On the class U, in: Proc. 21st Annual Conference of the Jammu Math. Soc. and National Seminar on Analysis and its Application, 2011, 11–26.

[8] Prokhorov, D. V., Szynal, J., Inverse coefficients for \((\alpha, \beta)\)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143 (1984).

[9] Sakaguchi, K., A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312–321.

[10] Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions. A Primer, De Gruyter, Berlin, 2018.