Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_1_a6, author = {Obradovic, Milutin and Tuneski, Nikola}, title = {Some properties of the class {\(\mathcal{U}\)}}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a6/} }
Obradovic, Milutin; Tuneski, Nikola. Some properties of the class \(\mathcal{U}\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a6/
[1] Goodman, A. W., Univalent Functions. Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983.
[2] Jack, I. S., Functions starlike and convex of order \(\alpha\), J. London Math. Soc. 3 (2) (1971), 469–474.
[3] Mocanu, P. T., Une propriete de convexite generalisee dans la theorie de la representation conforme, Mathematica (Cluj) 11 (34) (1969), 127–133.
[4] Miller, S. S., Mocanu, P., Reade, M. O., All \(\alpha\)-convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554.
[5] Obradovic, M., Pascu, N. N., Radomir, I., A class of univalent functions, Math. Japon. 44 (3) (1996), 565–568.
[6] Obradovic, M., Ponnusamy, S., New criteria and distortion theorems for univalent functions, Complex Variables Theory Appl. 44 (3) (2001), 173–191.
[7] Obradovic, M., Ponnusamy, S., On the class U, in: Proc. 21st Annual Conference of the Jammu Math. Soc. and National Seminar on Analysis and its Application, 2011, 11–26.
[8] Prokhorov, D. V., Szynal, J., Inverse coefficients for \((\alpha, \beta)\)-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143 (1984).
[9] Sakaguchi, K., A note on p-valent functions, J. Math. Soc. Japan 14 (1962), 312–321.
[10] Thomas, D. K., Tuneski, N., Vasudevarao, A., Univalent Functions. A Primer, De Gruyter, Berlin, 2018.