Additive inequalities for weighted harmonic and arithmetic operator means
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper we establish some new upper and lower bounds for the difference between the weighted arithmetic and harmonic operator means under various assumptions for the positive invertible operators A, B. Some applications when A, B are bounded above and below by positive constants are given as well.
Keywords: Young’s inequality, convex functions, arithmetic meanharmonic mean inequality, operator means, operator inequalities
@article{AUM_2019_73_1_a2,
     author = {Dragomir, Sever},
     title = {Additive inequalities for weighted harmonic and arithmetic operator means},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {73},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/}
}
TY  - JOUR
AU  - Dragomir, Sever
TI  - Additive inequalities for weighted harmonic and arithmetic operator means
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2019
VL  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/
LA  - en
ID  - AUM_2019_73_1_a2
ER  - 
%0 Journal Article
%A Dragomir, Sever
%T Additive inequalities for weighted harmonic and arithmetic operator means
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2019
%V 73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/
%G en
%F AUM_2019_73_1_a2
Dragomir, Sever. Additive inequalities for weighted harmonic and arithmetic operator means. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/

[1] Dragomir, S. S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417–478.

[2] Dragomir, S. S., A note on Young’s inequality, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 111 (2) (2017), 349–354.

[3] Dragomir, S. S., Some new reverses of Young’s operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. http://rgmia.org/papers/v18/v18a130.pdf

[4] Dragomir, S. S., On new refinements and reverses of Young’s operator inequality, Transylv. J. Math. Mech. 8 (1) (2016), 45–49.

[5] Dragomir, S. S., Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. http://rgmia.org/papers/v18/v18a139.pdf

[6] Dragomir, S. S., Some reverses and a refinement of H¨older operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. http://rgmia.org/papers/v18/v18a147.pdf

[7] Dragomir, S. S., Some inequalities for weighted harmonic and arithmetic operator means, Fasc. Math. No. 61 (2018), 43–54.

[8] Furuichi, S., Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.

[9] Furuichi, S., On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21–31.

[10] Liao, W., Wu, J., Zhao, J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2) (2015), 467–479.

[11] Tominaga, M., Specht’s ratio in the Young inequality, Sci. Math. Japon. 55 (2002), 583–588.

[12] Zuo, G., Shi, G., Fujii, M., Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551–556.