Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_1_a2, author = {Dragomir, Sever}, title = {Additive inequalities for weighted harmonic and arithmetic operator means}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/} }
TY - JOUR AU - Dragomir, Sever TI - Additive inequalities for weighted harmonic and arithmetic operator means JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2019 VL - 73 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/ LA - en ID - AUM_2019_73_1_a2 ER -
Dragomir, Sever. Additive inequalities for weighted harmonic and arithmetic operator means. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a2/
[1] Dragomir, S. S., Bounds for the normalized Jensen functional, Bull. Austral. Math. Soc. 74 (3) (2006), 417–478.
[2] Dragomir, S. S., A note on Young’s inequality, Rev. R. Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. RACSAM 111 (2) (2017), 349–354.
[3] Dragomir, S. S., Some new reverses of Young’s operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 130. http://rgmia.org/papers/v18/v18a130.pdf
[4] Dragomir, S. S., On new refinements and reverses of Young’s operator inequality, Transylv. J. Math. Mech. 8 (1) (2016), 45–49.
[5] Dragomir, S. S., Some inequalities for operator weighted geometric mean, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 139. http://rgmia.org/papers/v18/v18a139.pdf
[6] Dragomir, S. S., Some reverses and a refinement of H¨older operator inequality, Preprint RGMIA Res. Rep. Coll. 18 (2015), Art. 147. http://rgmia.org/papers/v18/v18a147.pdf
[7] Dragomir, S. S., Some inequalities for weighted harmonic and arithmetic operator means, Fasc. Math. No. 61 (2018), 43–54.
[8] Furuichi, S., Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc. 20 (2012), 46–49.
[9] Furuichi, S., On refined Young inequalities and reverse inequalities, J. Math. Inequal. 5 (2011), 21–31.
[10] Liao, W., Wu, J., Zhao, J., New versions of reverse Young and Heinz mean inequalities with the Kantorovich constant, Taiwanese J. Math. 19 (2) (2015), 467–479.
[11] Tominaga, M., Specht’s ratio in the Young inequality, Sci. Math. Japon. 55 (2002), 583–588.
[12] Zuo, G., Shi, G., Fujii, M., Refined Young inequality with Kantorovich constant, J. Math. Inequal. 5 (2011), 551–556.