Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2019_73_1_a1, author = {Mir, Abdullah}, title = {Growth of a polynomial not vanishing in a disk}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, pages = {41--48}, publisher = {mathdoc}, volume = {73}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a1/} }
Mir, Abdullah. Growth of a polynomial not vanishing in a disk. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 73 (2019) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/AUM_2019_73_1_a1/
[1] Ankeny, N. C., Rivlin, T. J., On a theorem of S. Bernstein, Pacific J. Math. 5 (1955), 849–852.
[2] Aziz, A., Aliya, Q., Growth of polynomials not vanishing in a disk of prescribed radius, Int. J. Pure Appl. Math. 41 (2007), 713–734.
[3] Govil, N. K., Qazi, M. A., Rahman, Q. I., Inequalities describing the growth of polynomials not vanishing in a disk of prescribed radius, Math. Ineq. Appl. 6 (2003), 453–467.
[4] Jain, V. K., A generalization of Ankeny and Rivlin’s result on the maximum modulus of polynomials not vanishing in the interior of the unit circle, Turk. J. Math. 31 (2007), 89–94.
[5] Milovanovic, G. V., Mitrinovic, D. S., Rassias, Th. M., Topics in polynomials, Extremal problems, Inequalities, Zeros, World scientific, Singapore, 1944.