Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2018_72_2_a7, author = {Bielak, Halina and Powro\'znik, Kamil}, title = {The density {Turan} problem for 3-uniform linear hypertrees. {An} efficient testing algorithm}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a7/} }
TY - JOUR AU - Bielak, Halina AU - Powroźnik, Kamil TI - The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2018 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a7/ LA - en ID - AUM_2018_72_2_a7 ER -
%0 Journal Article %A Bielak, Halina %A Powroźnik, Kamil %T The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2018 %V 72 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a7/ %G en %F AUM_2018_72_2_a7
Bielak, Halina; Powroźnik, Kamil. The density Turan problem for 3-uniform linear hypertrees. An efficient testing algorithm. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a7/
[1] Baber, R., Johnson, J. R., Talbot, J., The minimal density of triangles in tripartite graphs, LMS J. Comput. Math. 13 (2010), 388-413,
[2] http://dx.doi.org/10.1112/S1461157009000436.
[3] Berge, C., Graphs and Hypergraphs, Elsevier, New York, 1973.
[4] Bielak, H., Powroznik, K., An efficient algorithm for the density Tur´an problem of some unicyclic graphs, in: Proceedings of the 2014 FedCSIS, Annals of Computer Science and Information Systems 2 (2014), 479-486,
[5] http://dx.doi.org/10.15439/978-83-60810-58-3.
[6] Bollobas, B., Extremal Graph Theory, Academic Press, London, 1978.
[7] Bondy, A., Shen, J., Thomasse, S., Thomassen, C., Density conditions for triangles in multipartite graphs, Combinatorica 26 (2) (2006), 121-131,
[8] http://dx.doi.org/10.1007/s00493-006-0009-y.
[9] Brown, W. G., Erdos, P., Simonovits, M., Extremal problems for directed graphs, J. Combin. Theory B 15 (1) (1973), 77-93,
[10] http://dx.doi.org/10.1016/0095-8956(73)90034-8.
[11] Csikvari, P., Nagy, Z. L., The density Tur´an problem, Combin. Probab. Comput. 21 (2012), 531-553,
[12] http://dx.doi.org/10.1017/S0963548312000016.
[13] Furedi, Z., Turan type problems, in: (A. D. Keedwell, ed.) Survey in Combinatorics, 1991, Cambridge Univ. Press, Cambridge, 1991, 253-300,
[14] http://dx.doi.org/10.1017/cbo9780511666216.010.
[15] Godsil, C. D., Royle, G., Algebraic Graph Theory, Springer-Verlag, New York, 2001,
[16] http://dx.doi.org/10.1007/978-1-4613-0163-9.
[17] Jin, G., Complete subgraphs of r-partite graphs, Combin. Probab. Comput. 1 (1992), 241-250,
[18] http://dx.doi.org/10.1017/s0963548300000274.
[19] Nagy, Z. L., A multipartite version of the Turan problem – density conditions and eigenvalues, Electron. J. Combin. 18 (1) (2011), Paper 46, 15 pp.
[20] Turan, P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452.
[21] Yuster, R., Independent transversal in r-partite graphs, Discrete Math. 176 (1997), 255-261,
[22] http://dx.doi.org/10.1016/s0012-365x(96)00300-7.