On the existence of connections with a prescribed skew-symmetric Ricci tensor
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 72 (2018) no. 2
Cet article a éte moissonné depuis la source Library of Science
We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
Keywords:
Linear connection, Ricci tensor
@article{AUM_2018_72_2_a4,
author = {Kurek, Jan and Mikulski, W{\l}odzimierz},
title = {On the existence of connections with a prescribed skew-symmetric {Ricci} tensor},
journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
year = {2018},
volume = {72},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/}
}
TY - JOUR AU - Kurek, Jan AU - Mikulski, Włodzimierz TI - On the existence of connections with a prescribed skew-symmetric Ricci tensor JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2018 VL - 72 IS - 2 UR - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/ LA - en ID - AUM_2018_72_2_a4 ER -
Kurek, Jan; Mikulski, Włodzimierz. On the existence of connections with a prescribed skew-symmetric Ricci tensor. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/
[1] Dusek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion?, Publ. Math. Debrecen 88 (3-4) (2016), 511-516.
[2] Gasqui, J., Connexions a courbure de Ricci donnee, Math. Z. 168 (2) (1979), 167-179.
[3] Gasqui, J., Sur la courbure de Ricci d’une connexion lineaire, C. R. Acad. Sci. Paris Ser A–B 281 (11) (1975), 389-391.
[4] Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, J. Wiley-Interscience, New York, 1963.
[5] Opozda, B., Mikulski, W. M., The Cauchy-Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2) (2018), 528-536.