On the existence of connections with a prescribed skew-symmetric Ricci tensor
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2.

Voir la notice de l'article provenant de la source Library of Science

We study the so-called inverse problem. Namely, given a prescribed skew-symmetric Ricci tensor we find (locally) a respective linear connection.
Keywords: Linear connection, Ricci tensor
@article{AUM_2018_72_2_a4,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz},
     title = {On the existence of connections with a prescribed skew-symmetric {Ricci} tensor},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz
TI  - On the existence of connections with a prescribed skew-symmetric Ricci tensor
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/
LA  - en
ID  - AUM_2018_72_2_a4
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz
%T On the existence of connections with a prescribed skew-symmetric Ricci tensor
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/
%G en
%F AUM_2018_72_2_a4
Kurek, Jan; Mikulski, Włodzimierz. On the existence of connections with a prescribed skew-symmetric Ricci tensor. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a4/

[1] Dusek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion?, Publ. Math. Debrecen 88 (3-4) (2016), 511-516.

[2] Gasqui, J., Connexions a courbure de Ricci donnee, Math. Z. 168 (2) (1979), 167-179.

[3] Gasqui, J., Sur la courbure de Ricci d’une connexion lineaire, C. R. Acad. Sci. Paris Ser A–B 281 (11) (1975), 389-391.

[4] Kobayashi, S., Nomizu, K., Foundation of Differential Geometry, Vol. I, J. Wiley-Interscience, New York, 1963.

[5] Opozda, B., Mikulski, W. M., The Cauchy-Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2) (2018), 528-536.