On \(\ell_1\)-preduals distant by 1
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2.

Voir la notice de l'article provenant de la source Library of Science

For every predual X of ℓ_1 such that the standard basis in ℓ_1 is weak^* convergent, we give explicit models of all Banach spaces Y for which the Banach-Mazur distance d(X,Y)=1. As a by-product of our considerations, we obtain some new results in metric fixed point theory. First, we show that the space ℓ_1, with a predual X as above, has the stable weak^* fixed point property if and only if it has almost stable weak^* fixed point property, i.e. the dual Y^* of every Banach space Y has the weak^* fixed point property (briefly, σ(Y^*,Y)-FPP) whenever d(X,Y)=1. Then, we construct a predual X of ℓ_1 for which ℓ_1 lacks the stable σ(ℓ_1,X)-FPP but it has almost stable σ(ℓ_1,X)-FPP, which in turn is a strictly stronger property than the σ(ℓ_1,X)-FPP. Finally, in the general setting of preduals of ℓ_1, we give a sufficient condition for almost stable weak^* fixed point property in ℓ_1 and we prove that for a wide class of spaces this condition is also necessary.
Keywords: Banach-Mazur distance, nearly (almost) isometric Banach spaces, \(\ell_1\)-preduals, hyperplanes in c, weak\(^*\) fixed point property, stable weak\(^*\) fixed point property, almost stable weak\(^*\) fixed point property, nonexpansive mappings
@article{AUM_2018_72_2_a2,
     author = {Piasecki, {\L}ukasz},
     title = {On \(\ell_1\)-preduals distant by 1},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a2/}
}
TY  - JOUR
AU  - Piasecki, Łukasz
TI  - On \(\ell_1\)-preduals distant by 1
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a2/
LA  - en
ID  - AUM_2018_72_2_a2
ER  - 
%0 Journal Article
%A Piasecki, Łukasz
%T On \(\ell_1\)-preduals distant by 1
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a2/
%G en
%F AUM_2018_72_2_a2
Piasecki, Łukasz. On \(\ell_1\)-preduals distant by 1. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a2/

[1] Alspach, D. E., A \(\ell_1\)-predual which is not isometric to a quotient of \(C(\alpha)\), arXiv:math/9204215v1 [math.FA] 27 Apr. 1992.

[2] Banach, S., Theorie des operations lineaires, Monografie Matematyczne, Warszawa, 1932.

[3] Cambern, M., On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.

[4] Casini, E., Miglierina, E., Piasecki, Ł., Hyperplanes in the space of convergent sequences and preduals of \(\ell_1\), Canad. Math. Bull. 58 (2015), 459-470.

[5] Casini, E., Miglierina, E., Piasecki, Ł., Separable Lindenstrauss spaces whose duals lack the weak\(^*\) fixed point property for nonexpansive mappings, Studia Math. 238 (1) (2017), 1-16.

[6] Casini, E., Miglierina, E., Piasecki, Ł., Popescu, R., Stability constants of the weak\(^*\) fixed point property in the space \(\ell_1\), J. Math. Anal. Appl. 452 (1) (2017), 673-684.

[7] Casini, E., Miglierina, E., Piasecki, Ł., Popescu, R., Weak\(^*\) fixed point property in \(\ell_1\) and polyhedrality in Lindenstrauss spaces, Studia Math. 241 (2) (2018), 159-172.

[8] Casini, E., Miglierina, E., Piasecki, Ł., Vesely, L., Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math. 216 (2016), 355-369.

[9] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.

[10] Japon-Pineda, M. A., Prus, S., Fixed point property for general topologies in some Banach spaces, Bull. Austral. Math. Soc. 70 (2004), 229-244.

[11] Michael, E., Pełczyński, A., Separable Banach spaces which admit \(l_n^\infty\) approximations, Israel J. Math. 4 (1966), 189-198.

[12] Lazar, A. J., Lindenstrauss, J., On Banach spaces whose duals are \(L_1\) spaces, Israel J. Math. 4 (1966), 205-207.

[13] Pełczyński, A., in collaboration with Bessaga, Cz., Some aspects of the present theory of Banach spaces, in: Stefan Banach Oeuvres. Vol. II, PWN, Warszawa, 1979, 221-302.

[14] Piasecki, Ł., On Banach space properties that are not invariant under the Banach-Mazur distance 1, J. Math. Anal. Appl. 467 (2018), 1129-1147.