Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2018_72_2_a2, author = {Piasecki, {\L}ukasz}, title = {On \(\ell_1\)-preduals distant by 1}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a2/} }
Piasecki, Łukasz. On \(\ell_1\)-preduals distant by 1. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a2/
[1] Alspach, D. E., A \(\ell_1\)-predual which is not isometric to a quotient of \(C(\alpha)\), arXiv:math/9204215v1 [math.FA] 27 Apr. 1992.
[2] Banach, S., Theorie des operations lineaires, Monografie Matematyczne, Warszawa, 1932.
[3] Cambern, M., On mappings of sequence spaces, Studia Math. 30 (1968), 73-77.
[4] Casini, E., Miglierina, E., Piasecki, Ł., Hyperplanes in the space of convergent sequences and preduals of \(\ell_1\), Canad. Math. Bull. 58 (2015), 459-470.
[5] Casini, E., Miglierina, E., Piasecki, Ł., Separable Lindenstrauss spaces whose duals lack the weak\(^*\) fixed point property for nonexpansive mappings, Studia Math. 238 (1) (2017), 1-16.
[6] Casini, E., Miglierina, E., Piasecki, Ł., Popescu, R., Stability constants of the weak\(^*\) fixed point property in the space \(\ell_1\), J. Math. Anal. Appl. 452 (1) (2017), 673-684.
[7] Casini, E., Miglierina, E., Piasecki, Ł., Popescu, R., Weak\(^*\) fixed point property in \(\ell_1\) and polyhedrality in Lindenstrauss spaces, Studia Math. 241 (2) (2018), 159-172.
[8] Casini, E., Miglierina, E., Piasecki, Ł., Vesely, L., Rethinking polyhedrality for Lindenstrauss spaces, Israel J. Math. 216 (2016), 355-369.
[9] Goebel, K., Kirk, W. A., Topics in Metric Fixed Point Theory, Cambridge Univ. Press, Cambridge, 1990.
[10] Japon-Pineda, M. A., Prus, S., Fixed point property for general topologies in some Banach spaces, Bull. Austral. Math. Soc. 70 (2004), 229-244.
[11] Michael, E., Pełczyński, A., Separable Banach spaces which admit \(l_n^\infty\) approximations, Israel J. Math. 4 (1966), 189-198.
[12] Lazar, A. J., Lindenstrauss, J., On Banach spaces whose duals are \(L_1\) spaces, Israel J. Math. 4 (1966), 205-207.
[13] Pełczyński, A., in collaboration with Bessaga, Cz., Some aspects of the present theory of Banach spaces, in: Stefan Banach Oeuvres. Vol. II, PWN, Warszawa, 1979, 221-302.
[14] Piasecki, Ł., On Banach space properties that are not invariant under the Banach-Mazur distance 1, J. Math. Anal. Appl. 467 (2018), 1129-1147.