Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2018_72_2_a1, author = {Br\'od, Dorota}, title = {On a two-parameter generalization of {Jacobsthal} numbers and its graph interpretation}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {72}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a1/} }
TY - JOUR AU - Bród, Dorota TI - On a two-parameter generalization of Jacobsthal numbers and its graph interpretation JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2018 VL - 72 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a1/ LA - en ID - AUM_2018_72_2_a1 ER -
Bród, Dorota. On a two-parameter generalization of Jacobsthal numbers and its graph interpretation. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 2. http://geodesic.mathdoc.fr/item/AUM_2018_72_2_a1/
[1] Dasdemir, A., The representation, generalized Binet formula and sums of the generalized Jacobsthal p-sequence, Hittite Journal of Science and Engineering 3 (2) (2016), 99-104.
[2] Diestel, R., Graph Theory, Springer-Verlag, Heidelberg-New York, 2005.
[3] Falcon, S., On the k-Jacobsthal numbers, American Review of Mathematics and Statistics 2 (1) (2014), 67-77.
[4] Gutman, I., Wagner, S., Maxima and minima of the Hosoya index and the Merrifield-Simmons index: a survey of results and techniques, Acta Appl. Math. 112 (3) (2010), 323-348.
[5] Jhala, D., Sisodiya, K., Rathore, G. P. S., On some identities for k-Jacobsthal numbers, Int. J. Math. Anal. (Ruse) 7 (9–12) (2013), 551-556.
[6] Horadam, A. F., Jacobsthal representation numbers, Fibonacci Quart. 34 (1) (1996), 40-54.
[7] Szynal-Liana, A., Włoch, A., Włoch, I., On generalized Pell numbers generated by Fibonacci and Lucas numbers, Ars Combin. 115 (2014), 411-423.
[8] Uygun, S., The (s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences, Applied Mathematical Sciences 9 (70) (2015), 3467-3476.