Spectral analysis of singular Sturm-Liouville operators on time scales
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we consider properties of the spectrum of a Sturm-Liouvilleoperator on time scales. We will prove that the regular symmetricSturm-Liouville operator is semi-bounded from below. We will also give someconditions for the self-adjoint operator associated with the singularSturm-Liouville expression to have a discrete spectrum. Finally, we willinvestigate the continuous spectrum of this operator.
Keywords: Sturm-Liouville operator, time scales, splitting method, discrete spectrum, continuous spectrum
@article{AUM_2018_72_1_a6,
     author = {Allahverdiev, Bilender P. and Tuna, Huseyin},
     title = {Spectral analysis of singular {Sturm-Liouville} operators on time scales},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a6/}
}
TY  - JOUR
AU  - Allahverdiev, Bilender P.
AU  - Tuna, Huseyin
TI  - Spectral analysis of singular Sturm-Liouville operators on time scales
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a6/
LA  - en
ID  - AUM_2018_72_1_a6
ER  - 
%0 Journal Article
%A Allahverdiev, Bilender P.
%A Tuna, Huseyin
%T Spectral analysis of singular Sturm-Liouville operators on time scales
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a6/
%G en
%F AUM_2018_72_1_a6
Allahverdiev, Bilender P.; Tuna, Huseyin. Spectral analysis of singular Sturm-Liouville operators on time scales. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1. http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a6/

[1] Agarwal, R. P., Bohner, M., Li, W.-T., Nonoscillation and Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 2004.

[2] Anderson, D. R., Guseinov, G. Sh., Hoffacker, J., Higher-order self-adjoint boundary-value problems on time scales, J. Comput. Appl. Math. 194 (2) (2006), 309-342.

[3] Atici Merdivenci, F., Guseinov, G. Sh., On Green’s functions and positive solutions for boundary value problems on time scales, J. Comput. Appl. Math. 141 (1-2) (2002), 75-99.

[4] Berkowitz, J., On the discreteness of spectra of singular Sturm-Liouville problems, Comm. Pure Appl. Math. 12 (1959), 523-542.

[5] Bohner, M., Peterson, A., Dynamic Equations on Time Scales, Birkhauser, Boston, 2001.

[6] Bohner, M., Peterson, A. (Eds.), Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003.

[7] Dunford, N., Schwartz, J. T., Linear Operators, Part II: Spectral Theory, Interscience, New York, 1963.

[8] Friedrics, K., Criteria for the discrete character of the spectra of ordinary differential equations, Courant Anniversary Volume, Interscience, New York, 1948.

[9] Friedrics, K., Criteria for discrete spectra, Comm. Pure. Appl. Math. 3 (1950), 439-449.

[10] Glazman, I. M., Direct methods of the qualitative spectral analysis of singular differential operators, Israel Program of Scientific Translations, Jerusalem, 1965.

[11] Guseinov, G. Sh., Self-adjoint boundary value problems on time scales and symmetric Green’s functions, Turkish J. Math. 29 (4) (2005), 365-380.

[12] Guseinov, G. Sh., An expansion theorem for a Sturm-Liouville operator on semiunbounded time scales, Adv. Dyn. Syst. Appl. 3 (1) (2008), 147-160.

[13] Hilger, S., Analysis on measure chains – a unified approach to continuous and discrete calculus, Results Math. 18 (1-2) (1990), 18-56.

[14] Hinton, D. B., Lewis, R. T., Discrete spectra criteria for singular differential operators with middle terms, Math. Proc. Cambridge Philos. Soc. 77 (1975), 337-347.

[15] Huseynov, A., Weyl’s limit point and limit circle for a dynamic systems, in: Dynamical Systems and Methods, Springer, New York, 2012, 215-225.

[16] Ismagilov, R. S., Conditions for semiboundedness and discreteness of the spectrum for one-dimensional differential equations, Dokl. Akad. Nauk SSSR 140 (1961), 33-36 (Russian).

[17] Jones, M. A., Song, B., Thomas, D. M., Controlling wound healing through debridement, Math. Comput. Modelling 40 (9-10) (2004), 1057-1064.

[18] Kreyszig, E., Introductory Functional Analysis with Applications, Wiley, New York, 1989.

[19] Lakshmikantham, V., Sivasundaram, S., Kaymakcalan, B., Dynamic Systems on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.

[20] Molchanov, A. M., Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations, Trudy Moskov. Mat. Obs. 2 (1953), 169-200 (Russian).

[21] Naimark, M. A., Linear Differential Operators, 2nd edition., Nauka, Moscow, 1969, English transl. of 1st edition, Frederick Ungar Publishing Co., New York, 1969.

[22] Rollins, L. W., Criteria for discrete spectrum of singular self-adjoint differential operators, Proc. Amer. Math. Soc. 34 (1972), 195-200.

[23] Rynne, B. P., \(L^2\) spaces and boundary value problems on time-scales, J. Math. Anal. Appl. 328 (2007), 1217-1236.

[24] Spedding, V., Taming nature’s numbers, New Scientist 179 (2003), 28-31.

[25] Thomas, D. M., Vandemuelebroeke, L., Yamaguchi, K., A mathematical evolution model for phytoremediation of metals, Discrete Contin. Dyn. Syst. Ser. B (2) (2005), 411-422.

[26] Weyl, H., Uber gewohnliche Differentialgleichungen mit Singularitaten und die zugehorigen Entwicklungen willkurlicher Funktionen, Math. Ann. 68 (2) (1910), 220-269.