On almost polynomial structures from classical linear connections
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Let ℳf_m be the category of m-dimensional manifolds and local diffeomorphisms and let T be the tangent functor on ℳf_m. Let 𝒱 be the category of real vector spaces and linear maps and let  𝒱_m be the category of  m-dimensional real vector spaces and linear isomorphisms. Let w be a polynomial in one variable with real coefficients. We describe all regular covariant functors F𝒱_m→𝒱 admitting ℳf_m-natural operators P̃ transforming classical linear connections ∇ on m-dimensional manifolds M into almost polynomial w-structures  P̃(∇) on F(T)M=⋃_x∈ MF(T_xM).
Keywords: Classical linear connection, almost polynomial structure, Weil bundle, natural operator
@article{AUM_2018_72_1_a2,
     author = {Bednarska, Anna},
     title = {On almost polynomial structures from classical linear connections},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a2/}
}
TY  - JOUR
AU  - Bednarska, Anna
TI  - On almost polynomial structures from classical linear connections
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a2/
LA  - en
ID  - AUM_2018_72_1_a2
ER  - 
%0 Journal Article
%A Bednarska, Anna
%T On almost polynomial structures from classical linear connections
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a2/
%G en
%F AUM_2018_72_1_a2
Bednarska, Anna. On almost polynomial structures from classical linear connections. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1. http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a2/

[1] Kaneyuki, S., Kozai, M., Paracomplex structures and affine symmetric spaces, Tokyo J. Math. 8 (1) (1985), 81-98.

[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol I, Interscience Publisher, New York-London, 1963.

[3] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

[4] Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324.

[5] Kurek, J., Mikulski, W. M., On almost complex structures from classical linear connections, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 71 (1) (2017), 55-60.

[6] Libermann, P., Sur les structures presque paracomplexes, C. R. Acad. Sci. Paris 234 (1952), 2517-2519.

[7] Libermann, P., Sur le probleme d’equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl. 36 (1954), 27-120.