Invo-regular unital rings
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1.

Voir la notice de l'article provenant de la source Library of Science

It was asked by Nicholson (Comm. Algebra, 1999) whether or not unit-regular rings are themselves strongly clean. Although they are clean as proved by Camillo-Khurana (Comm. Algebra, 2001), recently Nielsen and Ster showed in Trans. Amer. Math. Soc., 2018 that there exists a unit-regular ring which is not strongly clean. However, we define here a proper subclass of rings of the class of unit-regular rings, called invo-regular rings, and establish that they are strongly clean. Interestingly, without any concrete indications a priori, these rings are manifestly even commutative invo-clean as defined by the author in Commun. Korean Math. Soc., 2017.
Keywords: Unit-regular rings, clean rings, strongly clean rings, idempotents, involutions, nilpotents, units
@article{AUM_2018_72_1_a1,
     author = {Danchev, Peter V.},
     title = {Invo-regular unital rings},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a1/}
}
TY  - JOUR
AU  - Danchev, Peter V.
TI  - Invo-regular unital rings
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a1/
LA  - en
ID  - AUM_2018_72_1_a1
ER  - 
%0 Journal Article
%A Danchev, Peter V.
%T Invo-regular unital rings
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a1/
%G en
%F AUM_2018_72_1_a1
Danchev, Peter V. Invo-regular unital rings. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1. http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a1/

[1] Camillo, V. P., Khurana, D., A characterization of unit regular rings, Commun. Algebra 29 (2001), 2293-2295.

[2] Danchev, P. V., A new characterization of Boolean rings with identity, Irish Math. Soc. Bull. 76 (2015), 55-60.

[3] Danchev, P. V., On weakly clean and weakly exchange rings having the strong property, Publ. Inst. Math. Beograd 101 (2017), 135-142.

[4] Danchev, P. V., Invo-clean unital rings, Commun. Korean Math. Soc. 32 (2017), 19-27.

[5] Danchev, P. V., Lam, T. Y., Rings with unipotent units, Publ. Math. Debrecen 88 (2016), 449-466.

[6] Ehrlich, G., Unit-regular rings, Portugal. Math. 27 (1968), 209-212.

[7] Goodearl, K. R., Von Neumann Regular Rings, Second Edition, Robert E. Krieger Publishing Co., Inc., Malabar, FL, 1991.

[8] Hartwig, R. E., Luh, J., A note on the group structure of unit regular ring elements, Pacific J. Math. 71 (1977), 449-461.

[9] Hirano, Y., Tominaga, H., Rings in which every element is the sum of two idempotents, Bull. Austral. Math. Soc. 37 (1988), 161-164.

[10] Lam, T. Y., A First Course in Noncommutative Rings, Second Edition, Springer-Verlag, Berlin-Heidelberg-New York, 2001.

[11] Lam, T. Y., Murray, W., Unit regular elements in corner rings, Bull. Hong Kong Math. Soc. 1 (1997), 61-65.

[12] Nicholson, W. K., Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229 (1977), 269-278.

[13] Nicholson, W. K., Strongly clean rings and Fitting’s lemma, Commun. Algebra 27 (1999), 3583-3592.

[14] Nielsen, P. P., Ster, J., Connections between unit-regularity, regularity, cleanness and strong cleanness of elements and rings, Trans. Amer. Math. Soc. 370 (2018), 1759-1782.