An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1.

Voir la notice de l'article provenant de la source Library of Science

The main result establishes that a weak solution of degenerate nonlinear  elliptic equations can be approximated by a sequence of solutions for non-degenerate nonlinear elliptic equations.
Keywords: Degenerate nonlinear elliptic equations, weighted Sobolev spaces
@article{AUM_2018_72_1_a0,
     author = {Cavalheiro, Albo Carlos},
     title = {An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {72},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/}
}
TY  - JOUR
AU  - Cavalheiro, Albo Carlos
TI  - An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2018
VL  - 72
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/
LA  - en
ID  - AUM_2018_72_1_a0
ER  - 
%0 Journal Article
%A Cavalheiro, Albo Carlos
%T An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2018
%V 72
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/
%G en
%F AUM_2018_72_1_a0
Cavalheiro, Albo Carlos. An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1. http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/

[1] Cavalheiro, A. C., An approximation theorem for solutions of degenerate elliptic equations, Proc. Edinb. Math. Soc. 45 (2002), 363-389.

[2] Fabes, E., Kenig, C., Serapioni, R., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.

[3] Fernandes, J. C., Franchi, B., Existence and properties of the Green function for a class of degenerate parabolic equations, Rev. Mat. Iberoam. 12 (1996), 491-525.

[4] Garcıa-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.

[5] Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.

[6] Kufner, A., Weighted Sobolev Spaces, John Wiley Sons, New York, 1985.

[7] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.

[8] Murthy, M. K. V., Stampacchia, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1) (1968), 1-122.

[9] Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.

[10] Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.

[11] Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990.