Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2018_72_1_a0, author = {Cavalheiro, Albo Carlos}, title = {An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {72}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/} }
TY - JOUR AU - Cavalheiro, Albo Carlos TI - An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2018 VL - 72 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/ LA - en ID - AUM_2018_72_1_a0 ER -
%0 Journal Article %A Cavalheiro, Albo Carlos %T An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2018 %V 72 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/ %G en %F AUM_2018_72_1_a0
Cavalheiro, Albo Carlos. An existence and approximation theorem for solutions of degenerate nonlinear elliptic equations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 72 (2018) no. 1. http://geodesic.mathdoc.fr/item/AUM_2018_72_1_a0/
[1] Cavalheiro, A. C., An approximation theorem for solutions of degenerate elliptic equations, Proc. Edinb. Math. Soc. 45 (2002), 363-389.
[2] Fabes, E., Kenig, C., Serapioni, R., The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), 77-116.
[3] Fernandes, J. C., Franchi, B., Existence and properties of the Green function for a class of degenerate parabolic equations, Rev. Mat. Iberoam. 12 (1996), 491-525.
[4] Garcıa-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland Publishing Co., Amsterdam, 1985.
[5] Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford, 1993.
[6] Kufner, A., Weighted Sobolev Spaces, John Wiley Sons, New York, 1985.
[7] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[8] Murthy, M. K. V., Stampacchia, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pura Appl. 80 (1) (1968), 1-122.
[9] Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
[10] Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin, 2000.
[11] Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990.