Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 2

Voir la notice de l'article provenant de la source Library of Science

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W^1L^Φ([0,T]). We employ the direct method of calculus of variations and we consider  a potential  function F satisfying the inequality |∇ F(t,x)|≤ b_1(t) Φ_0'(|x|)+b_2(t), with b_1, b_2∈ L^1 and  certain N-functions Φ_0.
Keywords: Periodic solution, Orlicz-Sobolev spaces, Euler-Lagrange, \(N\)-function, critical points
@article{AUM_2017_71_2_a4,
     author = {Acinas, Sonia and Mazzone, Fernando},
     title = {Periodic solutions of {Euler-Lagrange} equations with sublinear potentials in an {Orlicz-Sobolev} space setting},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/}
}
TY  - JOUR
AU  - Acinas, Sonia
AU  - Mazzone, Fernando
TI  - Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica
PY  - 2017
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/
LA  - en
ID  - AUM_2017_71_2_a4
ER  - 
%0 Journal Article
%A Acinas, Sonia
%A Mazzone, Fernando
%T Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica
%D 2017
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/
%G en
%F AUM_2017_71_2_a4
Acinas, Sonia; Mazzone, Fernando. Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 2. http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/

[1] Acinas, S., Buri, L., Giubergia, G., Mazzone, F., Schwindt, E., Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015), 681-698.

[2] Adams, R., Fournier, J., Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.

[3] Conway, J. B., A Course in Functional Analysis, Springer, New York, 1985.

[4] Fiorenza, A., Krbec, M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (3) (1997), 433-452.

[5] Gustavsson, J., Peetre, J., Interpolation of Orlicz spaces, Studia Math. 60 (1) (1977), 33-59, URL http://eudml.org/doc/218150

[6] Hudzik, H., Maligranda, L., Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000), 573-585.

[7] Krasnoselskiı, M. A., Rutickiı, J. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.

[8] Maligranda, L., Orlicz Spaces and Interpolation, Vol. 5 of Seminarios de Matematica [Seminars in Mathematics], Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989.

[9] Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.

[10] Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991.

[11] Tang, C.-L., Periodic solutions of non-autonomous second-order systems with \(\gamma\)-quasisubadditive potential, J. Math. Anal. Appl. 189 (3) (1995), 71-675.

[12] Tang, C.-L., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (11) (1998), 3263-3270.

[13] Tang, C. L.,Wu, X.-P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2) (2001), 386-397.

[14] Tang, X., Zhang, X., Periodic solutions for second-order Hamiltonian systems with a p-Laplacian, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (1) (2010), 93-113.

[15] Tian, Y., Ge, W., Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal. 66 (1) (2007), 192-203.

[16] Wu, X.-P., Tang, C.-L., Periodic solutions of a class of non-autonomous second-order systems, J. Math. Anal. Appl. 236 (2) (1999), 227-235.

[17] Xu, B., Tang, C.-L., Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007), 1228-1236.

[18] Zhao, F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2) (2004), 422-434.

[19] Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2) (2005), 325-335.

[20] Zhu, K., Analysis on Fock Spaces, Springer, New York, 2012.