Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we obtain existence results of periodic solutions of hamiltonian systems in the Orlicz-Sobolev space W^1L^Φ([0,T]). We employ the direct method of calculus of variations and we consider  a potential  function F satisfying the inequality |∇ F(t,x)|≤ b_1(t) Φ_0'(|x|)+b_2(t), with b_1, b_2∈ L^1 and  certain N-functions Φ_0.
Keywords: Periodic solution, Orlicz-Sobolev spaces, Euler-Lagrange, \(N\)-function, critical points
@article{AUM_2017_71_2_a4,
     author = {Acinas, Sonia and Mazzone, Fernando},
     title = {Periodic solutions of {Euler-Lagrange} equations with sublinear potentials in an {Orlicz-Sobolev} space setting},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/}
}
TY  - JOUR
AU  - Acinas, Sonia
AU  - Mazzone, Fernando
TI  - Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/
LA  - en
ID  - AUM_2017_71_2_a4
ER  - 
%0 Journal Article
%A Acinas, Sonia
%A Mazzone, Fernando
%T Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/
%G en
%F AUM_2017_71_2_a4
Acinas, Sonia; Mazzone, Fernando. Periodic solutions of Euler-Lagrange equations with sublinear potentials in an Orlicz-Sobolev space setting. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2. http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a4/

[1] Acinas, S., Buri, L., Giubergia, G., Mazzone, F., Schwindt, E., Some existence results on periodic solutions of Euler-Lagrange equations in an Orlicz-Sobolev space setting, Nonlinear Anal. 125 (2015), 681-698.

[2] Adams, R., Fournier, J., Sobolev Spaces, Elsevier/Academic Press, Amsterdam, 2003.

[3] Conway, J. B., A Course in Functional Analysis, Springer, New York, 1985.

[4] Fiorenza, A., Krbec, M., Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolin. 38 (3) (1997), 433-452.

[5] Gustavsson, J., Peetre, J., Interpolation of Orlicz spaces, Studia Math. 60 (1) (1977), 33-59, URL http://eudml.org/doc/218150

[6] Hudzik, H., Maligranda, L., Amemiya norm equals Orlicz norm in general, Indag. Math. (N.S.) 11 (4) (2000), 573-585.

[7] Krasnoselskiı, M. A., Rutickiı, J. B., Convex Functions and Orlicz Spaces, P. Noordhoff Ltd., Groningen, 1961.

[8] Maligranda, L., Orlicz Spaces and Interpolation, Vol. 5 of Seminarios de Matematica [Seminars in Mathematics], Universidade Estadual de Campinas, Departamento de Matematica, Campinas, 1989.

[9] Mawhin, J., Willem, M., Critical Point Theory and Hamiltonian Systems, Springer-Verlag, New York, 1989.

[10] Rao, M. M., Ren, Z. D., Theory of Orlicz Spaces, Marcel Dekker, Inc., New York, 1991.

[11] Tang, C.-L., Periodic solutions of non-autonomous second-order systems with \(\gamma\)-quasisubadditive potential, J. Math. Anal. Appl. 189 (3) (1995), 71-675.

[12] Tang, C.-L., Periodic solutions for nonautonomous second order systems with sublinear nonlinearity, Proc. Amer. Math. Soc. 126 (11) (1998), 3263-3270.

[13] Tang, C. L.,Wu, X.-P., Periodic solutions for second order systems with not uniformly coercive potential, J. Math. Anal. Appl. 259 (2) (2001), 386-397.

[14] Tang, X., Zhang, X., Periodic solutions for second-order Hamiltonian systems with a p-Laplacian, Ann. Univ. Mariae Curie-Skłodowska Sect. A 64 (1) (2010), 93-113.

[15] Tian, Y., Ge, W., Periodic solutions of non-autonomous second-order systems with a p-Laplacian, Nonlinear Anal. 66 (1) (2007), 192-203.

[16] Wu, X.-P., Tang, C.-L., Periodic solutions of a class of non-autonomous second-order systems, J. Math. Anal. Appl. 236 (2) (1999), 227-235.

[17] Xu, B., Tang, C.-L., Some existence results on periodic solutions of ordinary p-Laplacian systems, J. Math. Anal. Appl. 333 (2) (2007), 1228-1236.

[18] Zhao, F., Wu, X., Periodic solutions for a class of non-autonomous second order systems, J. Math. Anal. Appl. 296 (2) (2004), 422-434.

[19] Zhao, F., Wu, X., Existence and multiplicity of periodic solution for non-autonomous second-order systems with linear nonlinearity, Nonlinear Anal. 60 (2) (2005), 325-335.

[20] Zhu, K., Analysis on Fock Spaces, Springer, New York, 2012.