Eccentric distance sum index for some classes of connected graphs
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2.

Voir la notice de l'article provenant de la source Library of Science

In this paper we show some properties of the eccentric distance sum index which is defined as follows ξ^d(G)=∑_v ∈ V(G)D(v) ε(v). This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.
Keywords: Adjacent eccentric distance sum, diameter, distance, eccentricity, radius, Wiener index
@article{AUM_2017_71_2_a1,
     author = {Bielak, Halina and Broniszewska, Katarzyna},
     title = {Eccentric distance sum index for some classes of connected graphs},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/}
}
TY  - JOUR
AU  - Bielak, Halina
AU  - Broniszewska, Katarzyna
TI  - Eccentric distance sum index for some classes of connected graphs
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/
LA  - en
ID  - AUM_2017_71_2_a1
ER  - 
%0 Journal Article
%A Bielak, Halina
%A Broniszewska, Katarzyna
%T Eccentric distance sum index for some classes of connected graphs
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/
%G en
%F AUM_2017_71_2_a1
Bielak, Halina; Broniszewska, Katarzyna. Eccentric distance sum index for some classes of connected graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 2. http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/

[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London, and Elsevier, New York, 1976.

[2] Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401.

[3] Hua, H., Zhang, S., Xu, K., Further results on the eccentric distance sum, Discrete App. Math. 160 (2012), 170-180.

[4] Hua, H., Xu, K., Wen, S., A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011), 364-366.

[5] Ilic, A., Yu, G., Feng, L., On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600.

[6] Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

[7] Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107.