Eccentric distance sum index for some classes of connected graphs
Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 2

Voir la notice de l'article provenant de la source Library of Science

In this paper we show some properties of the eccentric distance sum index which is defined as follows ξ^d(G)=∑_v ∈ V(G)D(v) ε(v). This index is widely used by chemists and biologists in their researches. We present a lower bound of this index for a new class of graphs.
Keywords: Adjacent eccentric distance sum, diameter, distance, eccentricity, radius, Wiener index
@article{AUM_2017_71_2_a1,
     author = {Bielak, Halina and Broniszewska, Katarzyna},
     title = {Eccentric distance sum index for some classes of connected graphs},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica},
     publisher = {mathdoc},
     volume = {71},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/}
}
TY  - JOUR
AU  - Bielak, Halina
AU  - Broniszewska, Katarzyna
TI  - Eccentric distance sum index for some classes of connected graphs
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica
PY  - 2017
VL  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/
LA  - en
ID  - AUM_2017_71_2_a1
ER  - 
%0 Journal Article
%A Bielak, Halina
%A Broniszewska, Katarzyna
%T Eccentric distance sum index for some classes of connected graphs
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica
%D 2017
%V 71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/
%G en
%F AUM_2017_71_2_a1
Bielak, Halina; Broniszewska, Katarzyna. Eccentric distance sum index for some classes of connected graphs. Annales Universitatis Mariae Curie-Skłodowska. Mathematica, Tome 71 (2017) no. 2. http://geodesic.mathdoc.fr/item/AUM_2017_71_2_a1/

[1] Bondy, J. A., Murty, U. S. R., Graph Theory with Application, Macmillan London, and Elsevier, New York, 1976.

[2] Gupta, S., Singh, M., Madan, A. K., Eccentric distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl. 275 (2002), 386-401.

[3] Hua, H., Zhang, S., Xu, K., Further results on the eccentric distance sum, Discrete App. Math. 160 (2012), 170-180.

[4] Hua, H., Xu, K., Wen, S., A short and unified proof of Yu et al.’s two results on the eccentric distance sum, J. Math. Anal. Appl. 382 (2011), 364-366.

[5] Ilic, A., Yu, G., Feng, L., On the eccentric distance sum of graphs, J. Math. Anal. Appl. 381 (2011), 590-600.

[6] Wiener, H., Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17-20.

[7] Yu, G., Feng, L., Ilic, A., On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011), 99-107.