Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2017_71_1_a7, author = {Mortini, Raymond}, title = {The {Riemann-Cantor} uniqueness theorem for unilateral trigonometric series via a special version of the {Lusin-Privalov} theorem}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {71}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/} }
TY - JOUR AU - Mortini, Raymond TI - The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2017 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/ LA - en ID - AUM_2017_71_1_a7 ER -
%0 Journal Article %A Mortini, Raymond %T The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2017 %V 71 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/ %G en %F AUM_2017_71_1_a7
Mortini, Raymond. The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/
[1] Cima, J., Ross, W., The Backward Shift on the Hardy Space, AMS, Providence, 2000.
[2] Fatou, P., Series trigonometriques et series de Taylor, Acta Math. 30 (1906), 335-400.
[3] Kechris, A. S., Set theory and uniqueness for trigonometric series, Preprint 1997. http://www.math.caltech.edu/ kechris/papers/uniqueness.pdf
[4] Riesz, F., Riesz, M., Uber die Randwerte einer analytischen Funktion, Quatrieme Congres des Math. Scand. (1916), 27-44,
[5] Lusin, N., Privaloff, J., Sur l’unicite et la multiplicite des fonctions analytiques, Ann. Sci. ENS 42 (1925), 143-191.
[6] Rudin, W., Real and Complex Analysis, third edition, McGraw-Hill, New York, 1986.
[7] Zygmund, A., Trigonometric Series, second edition, Vol. I+II Combined, Cambridge Math. Lib. 1959 and 1993.