The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Using Baire's theorem, we give a very simple proof of a special version of the Lusin-Privalov theorem and deduce via Abel's  theorem the  Riemann-Cantor theorem on the uniqueness of the coefficients of pointwise convergent unilateral trigonometric series.
Keywords: Boundary behaviour of analytic functions, trigonometric series
@article{AUM_2017_71_1_a7,
     author = {Mortini, Raymond},
     title = {The {Riemann-Cantor} uniqueness theorem for unilateral trigonometric series via a special version of the {Lusin-Privalov} theorem},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/}
}
TY  - JOUR
AU  - Mortini, Raymond
TI  - The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/
LA  - en
ID  - AUM_2017_71_1_a7
ER  - 
%0 Journal Article
%A Mortini, Raymond
%T The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/
%G en
%F AUM_2017_71_1_a7
Mortini, Raymond. The Riemann-Cantor uniqueness theorem for unilateral trigonometric series via a special version of the Lusin-Privalov theorem. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a7/

[1] Cima, J., Ross, W., The Backward Shift on the Hardy Space, AMS, Providence, 2000.

[2] Fatou, P., Series trigonometriques et series de Taylor, Acta Math. 30 (1906), 335-400.

[3] Kechris, A. S., Set theory and uniqueness for trigonometric series, Preprint 1997. http://www.math.caltech.edu/ kechris/papers/uniqueness.pdf

[4] Riesz, F., Riesz, M., Uber die Randwerte einer analytischen Funktion, Quatrieme Congres des Math. Scand. (1916), 27-44,

[5] Lusin, N., Privaloff, J., Sur l’unicite et la multiplicite des fonctions analytiques, Ann. Sci. ENS 42 (1925), 143-191.

[6] Rudin, W., Real and Complex Analysis, third edition, McGraw-Hill, New York, 1986.

[7] Zygmund, A., Trigonometric Series, second edition, Vol. I+II Combined, Cambridge Math. Lib. 1959 and 1993.