Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2017_71_1_a5, author = {Darwish, H. E. and Lashin, A. Y. and Sowileh, S. M.}, title = {Some properties for \(\alpha\)-starlike functions with respect to \(k\)-symmetric points of complex order}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {71}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a5/} }
TY - JOUR AU - Darwish, H. E. AU - Lashin, A. Y. AU - Sowileh, S. M. TI - Some properties for \(\alpha\)-starlike functions with respect to \(k\)-symmetric points of complex order JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2017 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a5/ LA - en ID - AUM_2017_71_1_a5 ER -
%0 Journal Article %A Darwish, H. E. %A Lashin, A. Y. %A Sowileh, S. M. %T Some properties for \(\alpha\)-starlike functions with respect to \(k\)-symmetric points of complex order %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2017 %V 71 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a5/ %G en %F AUM_2017_71_1_a5
Darwish, H. E.; Lashin, A. Y.; Sowileh, S. M. Some properties for \(\alpha\)-starlike functions with respect to \(k\)-symmetric points of complex order. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a5/
[1] Abubaker, A. A. A., Darus, M., On starlike and convex functions with respect to k-symmetric points, Internat. J. Math. Math. Sci., 2011 (2011), Art. ID 834064, 9 p.
[2] Al-Oboudi, F. M., On classes of functions related to starlike functions with respect to symmetric conjugate points defined by a fractional differential operator, Complex Anal. Oper. Theory 5 (2011), 647-658.
[3] Altintas, O., Irmak, H., Owa, S., Srivastava, H. M., Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Letters 20 (2007), 1218-1222.
[4] Chand, R., Singh, P., On certain schlicht mappings, Indian J. Pure Appl. Math. 10 (9) (1979), 1167-1174.
[5] Das, R. N., Singh, P., On subclasses of schlicht mapping, Indian J. Pure Appl. Math. 8 (1977), 864-872.
[6] Eenigenburg, P., Miller, S. S., Mocanu, P. T., Reade, M. O., On a Briot-Bouquet differential subordination, Rev. Roumaine Math. Pures Appl. 29 (1984), 567-573.
[7] Ma, W. C., Minda, D. A., A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang, and S. Zhang (Eds.), Int. Press, 1994, 157-169.
[8] Nasr, M. A., Aouf, M. K., On convex functions of complex order, Mansoura Sci. Bull. Egypt. 9 (1982), 565-582.
[9] Nasr, M. A., Aouf, M. K., Starlike functions of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
[10] Padmanabhan, K. S., Parvatham, R., Some applications of differential subordination, Bull. Aust. Math. Soc. 32 (3) (1985), 321-330.
[11] Parvatham, R., Radha, S., On \(\alpha\)-starlike and \(\alpha\)-close-to-convex functions with respect to n-symmetric points, Indian J. Pure Appl. Math. 16 (9) (1986), 1114-1122.
[12] Pascu, N. N., Alpha-close-to-convex functions, in: Romanian–Finnish Seminar on Complex Analysis (Bucharest, 1976), Springer, Berlin, 1979, 331-335.
[13] Pascu, N. N., Podaru, V., On the radius of alpha-starlikeness for starlike functions of order beta, in: Complex analysis – fifth Romanian–Finnish seminar, Part 1 (Bucharest, 1981), Springer, Berlin, 1983, 336–349.
[14] Ramachandran, C., Kavitha, D., Soupramanien, T., Certain bound for q-starlike and q-convex function with respect to symmetric points, Internat. J. Math. Math. Sci. 2015 (2015), Art. ID 205682, 7 pp.
[15] Ravichandran, V., Polatoglury, Y., Bolcaly, M., Seny, A., Certain subclasses of starlike and convex functions of complex order, Hacettepe J. Math. Stat. 34 (2005), 9-15.
[16] Robertson, M. S., On the theory of univalent functions, Ann. Math. 37 (1936), 374-408.
[17] Sakaguchi, K., On certain univalent mapping, J. Math. Soc. Japan 11 (1959), 72-75.
[18] Wang, Z.-G., Gao, C.-Y., Yuan, S.-M., On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322 (1) (2006), 97-106.
[19] Wang, Z.-G., Gao, C.-Y., Orhan, H., Akbulut, S., Some subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, General Math., 15 (4) (2007), 107-119.
[20] Wiatrowski, P., The coefficient of a certain family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz. Nauki Mat. Przyrod. Ser. II No. 39 Mat. (1971), 75-85.
[21] Yuan, S.-M., Liu, Z.-M., Some properties of -convex and -quasiconvex functions with respect to n-symmetric points, Appl. Math. Comput. 188 (2) (2007), 1142-1150.