On almost complex structures from classical linear connections
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Let ℳ f_m be the category of m-dimensional manifolds and local diffeomorphisms and  let T be the tangent functor on ℳ f_m. Let 𝒱 be the category of real vector spaces and linear maps and let 𝒱_m be the category of m-dimensional real vector spaces and linear isomorphisms. We characterize all regular covariant functors F:𝒱_m→𝒱 admitting ℳ f_m-natural operators J̃ transforming classical linear connections ∇ on m-dimensional manifolds M into almost complex structures J̃(∇) on F(T)M=⋃_x∈ MF(T_xM).
Keywords: Classical linear connection, almost complex structure, Weil bundle, natural operator
@article{AUM_2017_71_1_a4,
     author = {Kurek, Jan and Mikulski, W{\l}odzimierz M.},
     title = {On almost complex structures from classical linear connections},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a4/}
}
TY  - JOUR
AU  - Kurek, Jan
AU  - Mikulski, Włodzimierz M.
TI  - On almost complex structures from classical linear connections
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a4/
LA  - en
ID  - AUM_2017_71_1_a4
ER  - 
%0 Journal Article
%A Kurek, Jan
%A Mikulski, Włodzimierz M.
%T On almost complex structures from classical linear connections
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a4/
%G en
%F AUM_2017_71_1_a4
Kurek, Jan; Mikulski, Włodzimierz M. On almost complex structures from classical linear connections. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a4/

[1] Dombrowski, P., On the geometry of the tangent bundles, J. Reine Angew. Math. 210 (1962), 73-88.

[2] Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Vol. I, J. Wiley-Interscience, New York–London, 1963.

[3] Kolar, I., Michor, P. W., Slovak, J., Natural Operations in Differential Geometry,

[4] Springer-Verlag, Berlin, 1993.

[5] Kurek, J., Mikulski, W. M., On lifting of connections to Weil bundles, Ann. Polon. Math. 103 (3) (2012), 319-324.