Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2017_71_1_a3, author = {Hachani, Mohamed Amine}, title = {Entire functions of exponential type not vanishing in the half-plane {\(\Im} z > k\), where \(k > 0\)}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {71}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/} }
TY - JOUR AU - Hachani, Mohamed Amine TI - Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\) JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2017 VL - 71 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/ LA - en ID - AUM_2017_71_1_a3 ER -
%0 Journal Article %A Hachani, Mohamed Amine %T Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\) %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2017 %V 71 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/ %G en %F AUM_2017_71_1_a3
Hachani, Mohamed Amine. Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/
[1] Besicovitch, A. S., Almost Periodic Functions, Cambridge University Press, London, 1932.
[2] Boas, R. P. Jr., Entire Functions, Academic Press, New York, 1954.
[3] Boas, R. P. Jr., Inequalities for asymmetric entire functions, Illinois J. Math. 3 (1957), 1-10.
[4] Bohr, H., Almost Periodic Functions, Chelsea Publishing Company, New York, 1947.
[5] van der Corput, J. G., Schaake G., Ungleichungen fur Polynome und trigonometrische Polynome, Composito Math. 2 (1935), 321-61.
[6] Govil, N. K., On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. India 50 (A) (1980), 50-52.
[7] Levin, B. Ya., On a special class of entire functions and on related extremal properties of entire functions of finite degree, Izvestiya Akad. Nauk SSSR. Ser. Math. 14 (1950), 45-84 (Russian).
[8] Qazi, M. A., Rahman, Q. I., The Schwarz–Pick theorem and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2) (2011), 149-167.
[9] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.
[10] Riesz, M., Formule d’interpolation pour la derivee d’un polynome trigonometrique, C. R. Acad. Sci. Paris 158 (1914), 1152-1154.