Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\)
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1.

Voir la notice de l'article provenant de la source Library of Science

Let P (z) be a polynomial of degree n having no zeros in |z| lt; k, k ≤ 1, and let Q (z) := z^n P (1/z). It was shown by Govil that if max_|z| = 1 |P^' (z)| and max_|z| = 1 |Q^' (z)| are attained at the same point of the unit circle |z| = 1, then max_|z| = 1 |P'(z)| ≤n/1 + k^nmax_|z| = 1 |P(z)|. The main result of the present article is a generalization of Govil's polynomial inequality to a class of entire functions of exponential type.
Keywords: Inequalities, entire functions of exponential type, polynomial, trigonometric polynomial
@article{AUM_2017_71_1_a3,
     author = {Hachani, Mohamed Amine},
     title = {Entire functions of exponential type not vanishing in the half-plane {\(\Im} z > k\), where \(k > 0\)},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {71},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/}
}
TY  - JOUR
AU  - Hachani, Mohamed Amine
TI  - Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\)
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2017
VL  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/
LA  - en
ID  - AUM_2017_71_1_a3
ER  - 
%0 Journal Article
%A Hachani, Mohamed Amine
%T Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\)
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2017
%V 71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/
%G en
%F AUM_2017_71_1_a3
Hachani, Mohamed Amine. Entire functions of exponential type not vanishing in the half-plane \(\Im z > k\), where \(k > 0\). Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 71 (2017) no. 1. http://geodesic.mathdoc.fr/item/AUM_2017_71_1_a3/

[1] Besicovitch, A. S., Almost Periodic Functions, Cambridge University Press, London, 1932.

[2] Boas, R. P. Jr., Entire Functions, Academic Press, New York, 1954.

[3] Boas, R. P. Jr., Inequalities for asymmetric entire functions, Illinois J. Math. 3 (1957), 1-10.

[4] Bohr, H., Almost Periodic Functions, Chelsea Publishing Company, New York, 1947.

[5] van der Corput, J. G., Schaake G., Ungleichungen fur Polynome und trigonometrische Polynome, Composito Math. 2 (1935), 321-61.

[6] Govil, N. K., On a theorem of S. Bernstein, Proc. Nat. Acad. Sci. India 50 (A) (1980), 50-52.

[7] Levin, B. Ya., On a special class of entire functions and on related extremal properties of entire functions of finite degree, Izvestiya Akad. Nauk SSSR. Ser. Math. 14 (1950), 45-84 (Russian).

[8] Qazi, M. A., Rahman, Q. I., The Schwarz–Pick theorem and its applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65 (2) (2011), 149-167.

[9] Rahman, Q. I., Schmeisser, G., Analytic Theory of Polynomials, Clarendon Press, Oxford, 2002.

[10] Riesz, M., Formule d’interpolation pour la derivee d’un polynome trigonometrique, C. R. Acad. Sci. Paris 158 (1914), 1152-1154.