Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2016_70_2_a2, author = {Cavalheiro, Albo Carlos}, title = {Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {70}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a2/} }
TY - JOUR AU - Cavalheiro, Albo Carlos TI - Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2016 VL - 70 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a2/ LA - en ID - AUM_2016_70_2_a2 ER -
%0 Journal Article %A Cavalheiro, Albo Carlos %T Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2016 %V 70 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a2/ %G en %F AUM_2016_70_2_a2
Cavalheiro, Albo Carlos. Existence and uniqueness of solutions for a class of degenerate nonlinear elliptic equations. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 2. http://geodesic.mathdoc.fr/item/AUM_2016_70_2_a2/
[1] Cavalheiro, A. C., Existence and uniqueness of solutions for some degenerate nonlinear Dirichlet problems, J. Appl. Anal. 19 (2013), 41-54.
[2] Cavalheiro, A. C., Existence results for Dirichlet problems with degenerated p-Laplacian and p-Biharmonic operators, Appl. Math. E-Notes 13 (2013), 234-242.
[3] Chipot, M., Elliptic Equations: An Introductory Course, Birkhauser, Berlin, 2009.
[4] Drabek, P., Kufner, A., Nicolosi, F., Quasilinear Elliptic Equations with Degenerations and Singularities, Walter de Gruyter, Berlin, 1997.
[5] Fucik, S., John, O., Kufner, A., Function Spaces, Noordhoff International Publ., Leyden, 1977.
[6] Garcia-Cuerva, J., Rubio de Francia, J. L., Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
[7] Gilbarg, D., Trudinger, N. S., Elliptic Partial Equations of Second Order, 2nd Ed., Springer, New York, 1983.
[8] Heinonen, J., Kilpelainen, T., Martio, O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Inc., New York, 1993.
[9] Kufner, A., Weighted Sobolev Spaces, John Wiley Sons, 1985.
[10] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226.
[11] Talbi, M., Tsouli, N., On the spectrum of the weighted p-Biharmonic operator with weight, Mediterr. J. Math. 4 (2007), 73-86.
[12] Torchinsky, A., Real-Variable Methods in Harmonic Analysis, Academic Press, San Diego, 1986.
[13] Turesson, B. O., Nonlinear Potential Theory and Weighted Sobolev Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 2000.
[14] Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. I, Springer-Verlag, New York, 1990.
[15] Zeidler, E., Nonlinear Functional Analysis and Its Applications. Vol. II/B, Springer-Verlag, New York, 1990.