Multiplication formulas for q-Appell polynomials and the multiple q-power sums
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 1.

Voir la notice de l'article provenant de la source Library of Science

In the first article on q-analogues of two Appell polynomials, the generalized Apostol-Bernoulli  and Apostol-Euler  polynomials, focus was on generalizations, symmetries, and complementary argument theorems. In this second article, we focus on a recent paper by Luo, and one paper on power sums by Wang and Wang. Most of the proofs are made by using generating functions, and the (multiple) q-addition plays a fundamental role. The introduction of the q-rational numbers in formulas with q-additions enables natural q-extension of vector forms of Raabes multiplication formulas. As special cases, new formulas for q-Bernoulli and q-Euler polynomials are obtained.
Keywords: Raabes multiplication formulas, q-Appell polynomials, multiple q-power sum, symmetry, q-rational number
@article{AUM_2016_70_1_a2,
     author = {Ernst, Thomas},
     title = {Multiplication formulas for {q-Appell} polynomials and the multiple q-power sums},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {70},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a2/}
}
TY  - JOUR
AU  - Ernst, Thomas
TI  - Multiplication formulas for q-Appell polynomials and the multiple q-power sums
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2016
VL  - 70
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a2/
LA  - en
ID  - AUM_2016_70_1_a2
ER  - 
%0 Journal Article
%A Ernst, Thomas
%T Multiplication formulas for q-Appell polynomials and the multiple q-power sums
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2016
%V 70
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a2/
%G en
%F AUM_2016_70_1_a2
Ernst, Thomas. Multiplication formulas for q-Appell polynomials and the multiple q-power sums. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 70 (2016) no. 1. http://geodesic.mathdoc.fr/item/AUM_2016_70_1_a2/

[1] Apostol, T. M., On the Lerch zeta function, Pacific J. Math. 1 (1951), 161-167.

[2] Carlitz, L., A note on the multiplication formulas for the Bernoulli and Euler polynomials, Proc. Amer. Math. Soc. 4 (1953), 184-188.

[3] Ernst. T., A Comprehensive Treatment of q-calculus, Birkhauser/Springer, Basel, 2012.

[4] Ernst, T., On certain generalized q-Appell polynomial expansions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 68, No. 2 (2015), 27-50.

[5] Ernst, T., A solid foundation for q-Appell polynomials, Adv. Dyn. Syst. Appl. 10 (2015), 27-35.

[6] Ernst, T., Expansion formulas for Apostol type q-Appell polynomials, and their special cases, submitted.

[7] Luo, Q.-M., Srivastava, H. M., Some generalizations of the Apostol-Bernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl. 308, No. 1 (2005), 290-302.

[8] Luo, Q-M., Srivastava, H. M., Some relationships between the Apostol-Bernoulli and Apostol-Euler polynomials, Comput. Math. Appl. 51, No. 3-4 (2006), 631-642.

[9] Luo, Q.-M., Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions, Taiwanese J. Math. 10, No. 4 (2006), 917-925.

[10] Luo, Q.-M., The multiplication formulas for the Apostol-Bernoulli and Apostol-Euler polynomials of higher order, Integral Transforms Spec. Funct. 20, No. 5-6 (2009), 377-391.

[11] Milne-Thomson, L. M., The Calculus of Finite Differences, Macmillan and Co., Ltd., London, 1951.

[12] Wang, Weiping, Wang, Wenwen, Some results on power sums and Apostol-type polynomials, Integral Transforms Spec. Funct. 21, No. 3-4 (2010), 307-318.