Vector space isomorphisms of non-unital reduced Banach *-algebras
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2.

Voir la notice de l'article provenant de la source Library of Science

Let A and B be two non-unital reduced Banach *-algebras and φ: A → B be a vector space isomorphism. The two following statement holds: If φ is a *-isomorphism, then φ is isometric (with respect to the C*-norms), bipositive and φ maps some approximate identity of A onto an approximate identity of B. Conversely, any two of the later three properties imply that φ is a *-isomorphism. Finally, we show that a unital and self-adjoint spectral isometry between semi-simple Hermitian Banach algebras is an *-isomorphism.
Keywords: Reduced Banach algebras, preserving the spectrum.
@article{AUM_2015_69_2_a6,
     author = {ElHarti, Rachid and Mabrouk, Mohamed},
     title = {Vector space isomorphisms of non-unital reduced {Banach} *-algebras},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a6/}
}
TY  - JOUR
AU  - ElHarti, Rachid
AU  - Mabrouk, Mohamed
TI  - Vector space isomorphisms of non-unital reduced Banach *-algebras
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a6/
LA  - en
ID  - AUM_2015_69_2_a6
ER  - 
%0 Journal Article
%A ElHarti, Rachid
%A Mabrouk, Mohamed
%T Vector space isomorphisms of non-unital reduced Banach *-algebras
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a6/
%G en
%F AUM_2015_69_2_a6
ElHarti, Rachid; Mabrouk, Mohamed. Vector space isomorphisms of non-unital reduced Banach *-algebras. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2. http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a6/

[1] Aupetit, B., Spectrum-preserving linear mappings between Banach algebras or Jordan-Banach algebras, J. Lond. Math. Soc. 62 (2000), 917-924.

[2] Bonsall, F. F., Stirling, D. S. G., Square roots in Banach *-algebras, Glasg. Math. J. 13 (1972), 74-74.

[3] Dixon, P. G., Approximate identities in normed algebras, Proc. Lond. Math. Soc. 26 (3) (1973), 485-496.

[4] Doran R. S., Belfi, V. A., Characterizations of C*-algebras. The Gelfand-Naimark Theorems, Marcel Dekker, New York, 1986.

[5] Ford, J. W. M., A square root lemma for Banach (*)-algebras, J. Lond. Math. Soc. 42 (1) (1967), 521-522.

[6] Kadisson, R. V., Isometries of operator algebras, Ann. of Math. 54 (2) (1951), 325-338.

[7] Martin, M., Towards a non-selfadjoint version of Kadison’s theorem, Ann. Math. Inform. 32 (2005), 87-94.

[8] Palmer, T. W., Banach Algebras and the General Theory of *-Algebras. *-Algebras, Vol. II, Cambridge University Press, Cambridge, 2001.

[9] Sakai, S., C*-algebras and W*-algebras, Springer-Verlag, New York-Berlin, 1971.

[10] Ylinen, K., Vector space isomorphisms of C*-algebras, Studia Math. 46 (1973), 31-34.