Voir la notice de l'article provenant de la source Library of Science
@article{AUM_2015_69_2_a5, author = {Bielak, Halina and D\k{a}browska, Kinga}, title = {The {Ramsey} numbers for some subgraphs of generalized wheels versus cycles and paths}, journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica }, publisher = {mathdoc}, volume = {69}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/} }
TY - JOUR AU - Bielak, Halina AU - Dąbrowska, Kinga TI - The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths JO - Annales Universitatis Mariae Curie-Skłodowska. Mathematica PY - 2015 VL - 69 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/ LA - en ID - AUM_2015_69_2_a5 ER -
%0 Journal Article %A Bielak, Halina %A Dąbrowska, Kinga %T The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths %J Annales Universitatis Mariae Curie-Skłodowska. Mathematica %D 2015 %V 69 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/ %G en %F AUM_2015_69_2_a5
Bielak, Halina; Dąbrowska, Kinga. The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2. http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/
[1] Burr, S. A., Ramsey numbers involving graphs with long suspended paths,
[2] J. London Math. Soc. 24 (2) (1981), 405-413.
[3] Burr, S. A., Erdos, P., Generalization of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983), 39-51.
[4] Chen, Y., Cheng, T. C. E., Ng, C. T., Zhang, Y., A theorem on cycle-wheel Ramsey number, Discrete Math. 312 (2012), 1059-1061.
[5] Chen, Y., Cheng, T. C. E., Miao, Z., Ng, C. T., The Ramsey numbers for cycles versus wheels of odd order, Appl. Math. Letters 22 (2009), 875-1876.
[6] Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (2005), 85-87.
[7] Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (1974), 269-277.
[8] Faudree, R. J., Schelp, R. H., All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974), 313-329.
[9] Karolyi, G., Rosta, V., Generalized and geometric Ramsey numbers for cycles, Theoretical Computer Science 263 (2001), 87-98.
[10] Lin, Q., Li, Y., Dong, L., Ramsey goodness and generalized stars, Europ. J. Combin. 31 (2010), 1228-1234.
[11] Radziszowski, S. P., Small Ramsey numbers, The Electronic Journal of Combinatorics (2014), DS1.14.
[12] Radziszowski, S. P., Xia, J., Paths, cycles and wheels without antitriangles,
[13] Australasian J. Combin. 9 (1994), 221-232.
[14] Rosta, V.,On a Ramsey type problem of J. A. Bondy and P. Erdos, I, II, J. Combin. Theory Ser. B 15 (1973), 94-120.
[15] Salman, A. N. M., Broersma, H. J., On Ramsey numbers for paths versus wheels, Discrete Math. 307 (2007), 975-982.
[16] Shi, L., Ramsey numbers of long cycles versus books or wheels, European J. Combin. 31 (2010), 828-838.
[17] Surahmat, Baskoro, E. T., Broersma, H. J., The Ramsey numbers of large cycles versus small wheels, Integers 4 (2004), A10.
[18] Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus odd wheels, Graphs Combin. 24 (2008), 53-58.
[19] Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus wheels, Discrete Math. 306 (24) (2006), 3334-3337.
[20] Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20.
[21] Zhang, L., Chen, Y., Cheng, T. C., The Ramsey numbers for cycles versus wheels of even order, European J. Combin. 31 (2010), 254-259.
[22] Zhang, Y., Chen, Y., The Ramsey numbers of wheels versus odd cycles, Discrete Math. 323 (2014), 76-80.