The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2.

Voir la notice de l'article provenant de la source Library of Science

The Ramsey number R(G, H) for a pair of graphs G and H is defined as the smallest integer n such that, for any graph F on n vertices, either F contains G or F contains H as a subgraph, where F denotes the complement of F. We study Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths and determine these numbers for some cases. We extend many known results studied in [5, 14, 18, 19, 20]. In particular we count the numbers R(K_1+L_n, P_m) and R(K_1+L_n, C_m) for some integers m, n, where L_n is a linear forest of order n with at least one edge.
Keywords: Cycle, path, Ramsey number, Turan number
@article{AUM_2015_69_2_a5,
     author = {Bielak, Halina and D\k{a}browska, Kinga},
     title = {The {Ramsey} numbers for some subgraphs of generalized wheels versus cycles and paths},
     journal = {Annales Universitatis Mariae Curie-Sk{\l}odowska. Mathematica },
     publisher = {mathdoc},
     volume = {69},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/}
}
TY  - JOUR
AU  - Bielak, Halina
AU  - Dąbrowska, Kinga
TI  - The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
JO  - Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
PY  - 2015
VL  - 69
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/
LA  - en
ID  - AUM_2015_69_2_a5
ER  - 
%0 Journal Article
%A Bielak, Halina
%A Dąbrowska, Kinga
%T The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths
%J Annales Universitatis Mariae Curie-Skłodowska. Mathematica 
%D 2015
%V 69
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/
%G en
%F AUM_2015_69_2_a5
Bielak, Halina; Dąbrowska, Kinga. The Ramsey numbers for some subgraphs of generalized wheels versus cycles and paths. Annales Universitatis Mariae Curie-Skłodowska. Mathematica , Tome 69 (2015) no. 2. http://geodesic.mathdoc.fr/item/AUM_2015_69_2_a5/

[1] Burr, S. A., Ramsey numbers involving graphs with long suspended paths,

[2] J. London Math. Soc. 24 (2) (1981), 405-413.

[3] Burr, S. A., Erdos, P., Generalization of a Ramsey-theoretic result of Chvatal, J. Graph Theory 7 (1983), 39-51.

[4] Chen, Y., Cheng, T. C. E., Ng, C. T., Zhang, Y., A theorem on cycle-wheel Ramsey number, Discrete Math. 312 (2012), 1059-1061.

[5] Chen, Y., Cheng, T. C. E., Miao, Z., Ng, C. T., The Ramsey numbers for cycles versus wheels of odd order, Appl. Math. Letters 22 (2009), 875-1876.

[6] Chen, Y., Zhang, Y., Zhang, K., The Ramsey numbers of paths versus wheels, Discrete Math. 290 (2005), 85-87.

[7] Faudree, R. J., Lawrence, S. L., Parsons, T. D., Schelp, R. H., Path-cycle Ramsey numbers, Discrete Math. 10 (1974), 269-277.

[8] Faudree, R. J., Schelp, R. H., All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974), 313-329.

[9] Karolyi, G., Rosta, V., Generalized and geometric Ramsey numbers for cycles, Theoretical Computer Science 263 (2001), 87-98.

[10] Lin, Q., Li, Y., Dong, L., Ramsey goodness and generalized stars, Europ. J. Combin. 31 (2010), 1228-1234.

[11] Radziszowski, S. P., Small Ramsey numbers, The Electronic Journal of Combinatorics (2014), DS1.14.

[12] Radziszowski, S. P., Xia, J., Paths, cycles and wheels without antitriangles,

[13] Australasian J. Combin. 9 (1994), 221-232.

[14] Rosta, V.,On a Ramsey type problem of J. A. Bondy and P. Erdos, I, II, J. Combin. Theory Ser. B 15 (1973), 94-120.

[15] Salman, A. N. M., Broersma, H. J., On Ramsey numbers for paths versus wheels, Discrete Math. 307 (2007), 975-982.

[16] Shi, L., Ramsey numbers of long cycles versus books or wheels, European J. Combin. 31 (2010), 828-838.

[17] Surahmat, Baskoro, E. T., Broersma, H. J., The Ramsey numbers of large cycles versus small wheels, Integers 4 (2004), A10.

[18] Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus odd wheels, Graphs Combin. 24 (2008), 53-58.

[19] Surahmat, Baskoro, E. T., Tomescu, I., The Ramsey numbers of large cycles versus wheels, Discrete Math. 306 (24) (2006), 3334-3337.

[20] Zhang, Y., On Ramsey numbers of short paths versus large wheels, Ars Combin. 89 (2008), 11-20.

[21] Zhang, L., Chen, Y., Cheng, T. C., The Ramsey numbers for cycles versus wheels of even order, European J. Combin. 31 (2010), 254-259.

[22] Zhang, Y., Chen, Y., The Ramsey numbers of wheels versus odd cycles, Discrete Math. 323 (2014), 76-80.